International Journal of Bifurcation and chaos, 9,
1465-1466.
Chua, L. O., Wu, C. W., Huang, A. & Zhong, G.-Q. 1993.
A universal circuit for studying and generating chaos.
I. Routes to chaos. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 40,
732-744.
Curiac, D.-I. & Volosencu, C. 2014. A 2D chaotic path
planning for mobile robots accomplishing boundary
surveillance missions in adversarial conditions.
Communications in Nonlinear Science and Numerical
Simulation, 19, 3617-3627.
Feki, M. 2004. Synchronization of chaotic systems with
parametric uncertainties using sliding observers.
International Journal of Bifurcation and Chaos, 14,
2467-2475.
Gaponov-Grekhov, A. V. & Rabinovich, M. I. 2011.
Nonlinearities in Action: Oscillations Chaos Order
Fractals, Springer Publishing Company, Incorporated.
Garfinkel, A. 1992. Controlling cardiac chaos. Science.
Hanias, M., Giannis, I. & Tombras, G. 2010. Chaotic
operation by a single transistor circuit in the reverse
active region. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 20, 013105.
Hanias, M. & Tombras, G. 2009. Time series cross
prediction in a single transistor chaotic circuit. Chaos,
Solitons & Fractals, 41, 1167-1173.
Hanias, P. M., Nistazakis, H. E., Tombras, G. S., 2010.
Study of an optoelectronic chaotic circuit.
International Interdisciplinary Chaos Symposium on
Chaos and Complex Systems, Istanbul, Turkey.
Jemaâ-Boujelben, S. B. & Feki, M. 2016. Synchronisation
of chaotic permanent magnet synchronous motors via
adaptive control based on sliding mode observer.
International Journal of Automation and Control, 10,
417-435.
Kaygisiz, B. H., Karahan, M., Erkmen, A. M. & Erkmen,
I. 2011. Robotic approaches at the crossroads of
Chaos, fractals and percolation theory. Applications of
Chaos and Nonlinear Dynamics in Engineering-Vol.
1. Springer.
Kiani-B, A., Fallahi, K., Pariz, N. & Leung, H. 2009. A
chaotic secure communication scheme using fractional
chaotic systems based on an extended fractional
Kalman filter. Communications in Nonlinear Science
and Numerical Simulation, 14, 863-879.
Kuznetsov, N. 2016. The Lyapunov dimension and its
estimation via the Leonov method. Physics Letters A,
380, 2142-2149.
KUZNETSOV, N., ALEXEEVA, T. & LEONOV, G.
2016. Invariance of Lyapunov exponents and
Lyapunov dimension for regular and irregular
linearizations. Nonlinear Dynamics, 85, 195-201.
Leonov, G. A. & Kuznetsov, N. V. 2013. Hidden
attractors in dynamical systems. From hidden
oscillations in Hilbert–Kolmogorov, Aizerman, and
Kalman problems to hidden chaotic attractor in Chua
circuits. International Journal of Bifurcation and
Chaos, 23, 1330002.
Li, C., Song, Y., Wang, F., Liang, Z. & Zhu, B. 2015.
Chaotic path planner of autonomous mobile robots
based on the standard map for surveillance missions.
Mathematical Problems in Engineering, 2015.
Li, C., Wang, F., Zhao, L., Li, Y. & Song, Y. 2013. An
improved chaotic motion path planner for autonomous
mobile robots based on a logistic map. International
Journal of Advanced Robotic Systems, 10, 273.
Lin, T.-C., Lee, T.-Y. & Balas, V. E. 2011. Adaptive
fuzzy sliding mode control for synchronization of
uncertain fractional order chaotic systems. Chaos,
Solitons & Fractals, 44, 791-801.
Lorenz, E. N. 1963. Deterministic nonperiodic flow.
Journal of the atmospheric sciences, 20, 130-141.
Lü, J. & Chen, G. 2002. A new chaotic attractor coined.
International Journal of Bifurcation and chaos, 12,
659-661.
Martins-Filho, L. S. & Macau, E. E. 2007. Trajectory
planning for surveillance missions of mobile robots.
Autonomous Robots and Agents. Springer.
May, R. M. 1976. Simple mathematical models with very
complicated dynamics. Nature, 261, 459-467.
Moon, F. C. Chaotic and Fractal Dynamics. Introduction
for Applied Scientists and Engineers: John Wiley &
Sons.
Morrison, F. 2012. The art of modeling dynamic systems:
forecasting for chaos, randomness and determinism,
Courier Corporation.
Nakamura, Y. & Sekiguchi, A. 2001. The chaotic mobile
robot. IEEE Transactions on Robotics and
Automation, 17, 898-904.
Pecora, L. M. & Carroll, T. L. 1990. Synchronization in
chaotic systems. Physical review letters, 64, 821.
Pham, V., Volos, C. K., Vaidyanathan, S., Le, T. & Vu, V.
2015. A memristor-based hyperchaotic system with
hidden attractors: dynamics, synchronization and
circuital emulating. Journal of Engineering Science
and Technology Review, 8, 205-214.
Rössler, O. E. 1976. An equation for continuous chaos.
Physics Letters A, 57, 397-398.
Rulkov, N. F., Sushchik, M. M., Tsimring, L. S. &
Abarbanel, H. D. 1995. Generalized synchronization
of chaos in directionally coupled chaotic systems.
Physical Review E, 51, 980.
Salah Nasr, K. B., Hassen Mekki 2015. Hyperchaos Set
By Fractal Processes System 8th International
CHAOS Conference Proceedings Henri Poincare
Institute, Paris, France
Sánchez-López, C., Trejo-Guerra, R., Munoz-Pacheco, J.
& Tlelo-Cuautle, E. 2010. N-scroll chaotic attractors
from saturated function series employing CCII+ s.
Nonlinear Dynamics, 61, 331-341.
Senejohnny, D. M. & Delavari, H. 2012. Active sliding
observer scheme based fractional chaos synchroniza-
tion. Communications in Nonlinear Science and
Numerical Simulation, 17, 4373-4383.
Sun, J., Shen, Y., Wang, X. & Chen, J. 2014. Finite-time
combination-combination synchronization of four
different chaotic systems with unknown parameters
via sliding mode control. Nonlinear Dynamics, 76,
383-397.
ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics
370