accuracy of the risk evaluation by using empirical
data, simulating the risk in a spatial manner, and
finally developing a real time risk analysis of UAVs
flight based on the real-time situation of construction
sites.
ACKNOWLEDGEMENTS
The authors sincerely thank the University of Florida
Office of Planning, Design and Construction for
their generosity in providing needed information for
this research.
REFERENCES
Akintoye, A.S., MacLeod, M.J., 1997. Risk analysis and
management in construction. Int. J. Proj. Manag. 15,
31–38. https://doi.org/10.1016/S0263-7863(96)00035-
X
Alejo, D., Cobano, J. A., Heredia, G., Ollero, A., 2016. An
Efficient Method for Multi-UAV Conflict Detection
and Resolution Under Uncertainties, in: Reis, L.P.,
Moreira, A.P., Lima, P.U., Montano, L., Muñoz-
Martinez, V. (Eds.), Advances in Intelligent Systems
and Computing, Advances in Intelligent Systems and
Computing. Springer International Publishing, Cham,
pp. 635–647. https://doi.org/10.1007/978-3-319-2714
6-0_49.
BLS, (2017). “Bureau of Labor Statistics: Census of Fatal
Occupational Injuries (CFOI) - Current and Revised
Data”. Available from: <https://www.bls.gov/iif/osh
cfoi1.htm#2015> (November 1st, 2017).
Christiansen, F., Rojano-Doñate, L., Madsen, P. T.,
Bejder, L., 2016. Noise levels of multi-rotor
unmanned aerial vehicles with implications for
potential underwater impacts on marine mammals.
Front. Mar. Sci. 3, 277.
Clarke, R., 2014. Understanding the drone epidemic.
Comput. Law Secur. Rev. 30, 230–246.
Clothier, R. A., Walker, R. A., 2006. Determination and
evaluation of UAV safety objectives.
Cook, S. P., Brooks, D., 2015. A Quantitative Metric to
Enable Unmanned Aircraft Systems to Remain Well
Clear. Air Traffic Control Q. 23, 137–156.
https://doi.org/10.2514/atcq.23.2-3.137
Douthwaite, J. A., De Freitas, A., Mihaylova, L. S., 2017.
An interval approach to multiple unmanned aerial
vehicle collision avoidance, in: 2017 Sensor Data
Fusion: Trends, Solutions, Applications (SDF). IEEE,
pp. 1–8. https://doi.org/10.1109/SDF.2017.8126384
Duncan, B. A., Murphy, R. R., 2013. Comfortable approach
distance with small unmanned aerial vehicles, in: RO-
MAN, 2013 IEEE. IEEE, pp. 786–792.
Ellenberg, A., Kontsos, A., Moon, F., Bartoli, I., 2016.
Bridge related damage quantification using unmanned
aerial vehicle imagery. Struct. Control Heal. Monit.
23, 1168–1179. https://doi.org/10.1002/stc.1831
Eschmann, C., Kuo, C.-M., Kuo, C.-H., Boller, C., 2013.
High-resolution multisensor infrastructure inspection
with unmanned aircraft systems. ISPRS-International
Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 125–
129.
Eschmann, C., Kuo, C.-M., Kuo, C.-H., Boller, C., 2012.
Unmanned aircraft systems for remote building
inspection and monitoring, in: Proceedings of the 6th
European Workshop on Structural Health Monitoring,
Dresden, Germany.
Finn, R. L., Wright, D., 2012. Unmanned aircraft systems:
Surveillance, ethics and privacy in civil applications.
Comput. Law Secur. Rev. 28, 184–194.
Ham, Y., Han, K. K., Lin, J. J., Golparvar-Fard, M., 2016.
Visual monitoring of civil infrastructure systems via
camera-equipped Unmanned Aerial Vehicles (UAVs):
a review of related works. Vis. Eng. 4, 1.
Han, K., Lin, J., Golparvar-Fard, M., 2015. A formalism
for utilization of autonomous vision-based systems
and integrated project models for construction
progress monitoring, in: Proceedings of 2015
Conference on Autonomous and Robotic Construction
of Infrastructure. pp. 118–131.
Hubbard, B., Wang, H., Leasure, M., Ropp, T., Lofton, T.,
Hubbard, S., Lin, S., 2015. Feasibility study of UAV
use for RFID material tracking on construction sites,
in: Proc. 51st ASC Annu. Int. Conf.
Irizarry, J., Gheisari, M., Walker, B.N., 2012. Usability
assessment of drone technology as safety inspection
tools. J. Inf. Technol. Constr. 17, 194–212.
Kerle, N., Fernandez Galarreta, J., Gerke, M., 2014. Urban
structural damage assessment with oblique UAV
imagery, object-based image analysis and semantic
reasoning, in: Proc., 35th Asian Conference on
Remote Sensing.
Kruijff, G.-J. M., Pirri, F., Gianni, M., Papadakis, P.,
Pizzoli, M., Sinha, A., Tretyakov, V., Linder, T.,
Pianese, E., Corrao, S., 2012. Rescue robots at
earthquake-hit Mirandola, Italy: A field report, in:
Safety, Security, and Rescue Robotics (SSRR), 2012
IEEE International Symposium on. IEEE, pp. 1–8.
Li, H., Yang, X., Wang, F., Rose, T., Chan, G., Dong, S.,
2016. Stochastic state sequence model to predict
construction site safety states through Real-Time
Location Systems. Saf. Sci. 84, 78–87.
Li, R. Y. M., Chau, K. W., Ho, D. C. W., 2017. Dynamic
Panel Analysis of Construction Accidents in Hong
Kong. Asian J. Law Econ. 8, 1–9. https://doi.org/10.
1515/ajle-2016-0022
Liew, C. F., Yairi, T., 2013. Quadrotor or blimp? Noise
and appearance considerations in designing social
aerial robot, in: Human-Robot Interaction (HRI), 2013
8th ACM/IEEE International Conference on. IEEE,
pp. 183–184.
Lin, J. J., Han, K. K., Golparvar-Fard, M., 2015. A
framework for model-driven acquisition and analytics
of visual data using UAVs for automated construction
progress monitoring, in: Computing in Civil