DAmbros, M., Lanza, M., and Robbes, R. (2012). Evaluat-
ing defect prediction approaches: a benchmark and an
extensive comparison. Empirical Software Engineer-
ing, 17(4-5):531–577.
Gao, K. and Khoshgoftaar, T. M. (2007). A comprehensive
empirical study of count models for software fault pre-
diction. IEEE Transactions on Reliability, 56(2):223–
236.
Golub, G. H. and Reinsch, C. (1970). Singular value de-
composition and least squares solutions. Numerische
mathematik, 14(5):403–420.
He, P., Li, B., and Ma, Y. (2014). Towards cross-project
defect prediction with imbalanced feature sets. arXiv
preprint arXiv:1411.4228.
He, Z., Shu, F., Yang, Y., Li, M., and Wang, Q. (2012).
An investigation on the feasibility of cross-project
defect prediction. Automated Software Engineering,
19(2):167–199.
Higgins, J. J. (2003). Introduction to modern nonparametric
statistics.
Hosseini, S., Turhan, B., and Gunarathna, D. (2017). A sys-
tematic literature review and meta-analysis on cross
project defect prediction. IEEE Transactions on Soft-
ware Engineering.
Huang, G., Huang, G.-B., Song, S., and You, K. (2015).
Trends in extreme learning machines: A review. Neu-
ral Networks, 61:32–48.
Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme
learning machine: theory and applications. Neuro-
computing, 70(1-3):489–501.
Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., and
Thambidurai, P. (2007). Object-oriented software
fault prediction using neural networks. Information
and software technology, 49(5):483–492.
Khoshgoftaar, T. M. and Gao, K. (2007). Count models
for software quality estimation. IEEE Transactions
on Reliability, 56(2):212–222.
Lan, Y., Soh, Y. C., and Huang, G.-B. (2009). Ensemble of
online sequential extreme learning machine. Neuro-
computing, 72(13-15):3391–3395.
Laradji, I. H., Alshayeb, M., and Ghouti, L. (2015). Soft-
ware defect prediction using ensemble learning on se-
lected features. Information and Software Technology,
58:388–402.
Lee, T., Nam, J., Han, D., Kim, S., and In, H. P. (2011). Mi-
cro interaction metrics for defect prediction. In Pro-
ceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of soft-
ware engineering, pages 311–321. ACM.
Li, W., Huang, Z., and Li, Q. (2016). Three-way decisions
based software defect prediction. Knowledge-Based
Systems, 91:263–274.
Lursinsap, A. M. P. S. C. (2002). Software fault predic-
tion using fuzzy clustering and radial-basis function
network.
MacDonell, S. G. (1997). Establishing relationships be-
tween specification size and software process effort in
case environments. Information and Software Tech-
nology, 39(1):35–45.
Menzies, T., Greenwald, J., and Frank, A. (2007). Data
mining static code attributes to learn defect predictors.
IEEE transactions on software engineering, 33(1):2–
13.
Menzies, T., Krishna, R., and Pryor, D. (2015). The
promise repository of empirical software engineering
data. http://openscience.us/repo. North Carolina State
University, Department of Computer Science.
Nam, J., Fu, W., Kim, S., Menzies, T., and Tan, L. (2017).
Heterogeneous defect prediction. IEEE Transactions
on Software Engineering.
Ostrand, T. J., Weyuker, E. J., and Bell, R. M. (2005). Pre-
dicting the location and number of faults in large soft-
ware systems. IEEE Transactions on Software Engi-
neering, 31(4):340–355.
Patro, S. and Sahu, K. K. (2015). Normalization: A prepro-
cessing stage. arXiv preprint arXiv:1503.06462.
Rathore, S. S. and Kumar, S. (2017a). An empirical
study of some software fault prediction techniques
for the number of faults prediction. Soft Computing,
21(24):7417–7434.
Rathore, S. S. and Kumar, S. (2017b). Linear and non-linear
heterogeneous ensemble methods to predict the num-
ber of faults in software systems. Knowledge-Based
Systems, 119:232–256.
Rathore, S. S. and Kumar, S. (2017c). Towards an ensemble
based system for predicting the number of software
faults. Expert Systems with Applications, 82:357–382.
Torgo, L., Ribeiro, R. P., Pfahringer, B., and Branco,
P. (2013). Smote for regression. In Portuguese
conference on artificial intelligence, pages 378–389.
Springer.
Willmott, C. J. and Matsuura, K. (2005). Advantages of the
mean absolute error (mae) over the root mean square
error (rmse) in assessing average model performance.
Climate research, 30(1):79–82.
Wolpert, D. H. (1992). Stacked generalization. Neural net-
works, 5(2):241–259.
Yang, X., Tang, K., and Yao, X. (2015). A learning-to-rank
approach to software defect prediction. IEEE Trans-
actions on Reliability, 64(1):234–246.
Zhang, F., Zheng, Q., Zou, Y., and Hassan, A. E. (2016).
Cross-project defect prediction using a connectivity-
based unsupervised classifier. In Proceedings of the
38th International Conference on Software Engineer-
ing, pages 309–320. ACM.
Cross Project Software Defect Prediction using Extreme Learning Machine: An Ensemble based Study
327