Figure 5: Images of different modes which were able to
propagate in the tellurite HC-PCF.
Figure 6: Calculated results of modes which can be
confined in a tellurite HC-PCF.
4 CONCLUSIONS
For the first time, we experimentally demonstrated
the fabrication of a tellurite HC-PCF which has a
large hexagonal hollow core in the center. A
supercontinuum light source from 500 nm to more
than 1500 nm was launched into the fiber. The result
shows that the light beam can be coupled and
propagated in the hollow core with the fundamental
mode. With the advantages of using tellurite glass
such as high refractive index and broad transmission
spectrum, it is expected that tellurite HC-PCF will
be a good candidate for many interesting
applications which are not possible to obtain by
using silica-based HC-PCFs.
ACKNOWLEDGEMENTS
This work was supported by the JSPS KAKENHI
Grant Number 15H02250 and by JSPS KAKENHI
Grant Number 17K14671.
REFERENCES
Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A.,
Russell, P. S. J., Roberts, P. J., Allan, D. C., 1999.
Single-mode photonic band gap guidance of light in
air, Science, 285, 1537-1539.
Cubillas, A. M., Jiang, X., Euser, T. G., Taccardi, N.,
Etzold, B. J., Wasserscheid, P., Russell, P. S. J., 2017.
Photochemistry in a soft-glass single-ring hollow-core
photonic crystal fibre, Analyst, 142, 925-929.
Poli, F., Cucinotta, A., Selleri, S., 2007, Photonic crystal
fibers: properties and applications, The Netherlands,
Springer Science & Business Media.
Poletti, F., Petrovich, M. N., Richardson, D. J., 2013,
Hollow-core photonic bandgap fibers: technology and
applications, Nanophotonics, 2, 315-340.
Hansen, T. P., Broeng, J., Jakobsen, C., Vienne, G.,
Simonsen, H. R., Nielsen, M. D., Skovgaard, P. M.,
Folkenberg, J. R., Bjarklev, A., 2004. Air-guiding
photonic bandgap fibers: spectral properties,
macrobending loss, and practical handling, J.
Lightwave. Technol., 22, 11-15.
Joly, N. Y., Nold, J., Chang, W., Hölzer, P., Nazarkin, A.,
Wong, G. K. L., Biancalana, F., Russell, P. S. J., 2011.
Bright spatially coherent wavelength-tunable deep-UV
laser source using an Ar-filled photonic crystal fiber,
Phys. Rev. Lett., 106, 203901-203904.
Mak, K. F., Travers, J. C., Hölzer, P., Joly N. Y., Russell,
P. S. J., 2013. Tunable vacuum-UV to visible ultrafast
pulse source based on gas-filled Kagome-PCF, Opt.
Express, 21, 10942-10953.
Travers, J. C., Chang, W., Nold, J., Joly, N. Y., Russell, P.
S. J., 2011. Ultrafast nonlinear optics in gas-filled
hollow-core photonic crystal fibers, JOSA B, 28, 11-
26.
Cubillas, A. M., Hald, J., Petersen, J. C., 2008. High
resolution spectroscopy of ammonia in a hollow-core
fiber, Opt. Express, 16, 3976-3985.
Cubillas, A. M., Lazaro, J. M., Conde, O. M., Petrovich,
M. N., Lopez-Higuera J. M., 2009. Gas sensor based
on photonic crystal fibres in the 2ν3 and ν2+ 2ν3
vibrational bands of methane, Sensors, 9, 6261-6272.
Nwaboh, J. A., Hald, J., Lyngso, J. K., Petersen, J. C.,
Werhahn, O., 2013. Measurements of CO
2
in a