Wagarachchi and Karunananda, 2017). Although
they do not seem to be directly related to this
paper, they point out the generality of GS
approaches described in the previous sections.
5 CONCLUSIONS
This paper has presented the design of gain-
scheduling control approaches viewed as adaptive
control approaches developed to deal with the
nonlinearities of the electromagnetic actuator and
to ensure the switching between PI controllers. The
simulation results prove that the GS-based control
systems guarantee the performance improvement
(zero steady-state control error, small settling times
and small overshoots) with respect to staircase
changes of the reference input.
Future research will be focused on the
improvement of the performance indices by
designing of CSs with PI(D) fuzzy gain-scheduling
controllers, with model predictive controllers and
hybrid structures applied to mechatronics systems.
REFERENCES
Alique, A., Haber, R. E., Haber, R. H., Ros, S.,
Gonzalez, C., 2000. Neural network-based model for
the prediction of cutting force in milling process. A
progress study on a real case. In Proceedings of 15
th
IEEE International Symposium on Intelligent
Control. Patras, Greece, 121-125.
Andonovski, G., Blažič, S., Angelov, P., Škrjanc, I.,
2015. Analysis of adaptation law of the robust
evolving cloud-based controller, In Proceedings of
2015 International Conference on Evolving and
Adaptive Intelligent Systems, Douai, France, 1-7.
Andonovski, G., Angelov, P., Blažič, S., Škrjanc, I.,
2016. A practical implementation of robust evolving
cloud-based controller with normalized data space
for heat-exchanger plant. Applied Soft Computing.
48, 29-38.
Åström, K. J., Hägglund, T., 1995. PID Controllers
Theory: Design and Tuning. Instrument Society of
America, Research Triangle Park, NC, USA.
Bishop, R. H., 2008. Mechatronic Systems, Sensors, and
Actuators: Fundamentals and Modeling. CRC Press,
Boca Raton, FL, USA.
Blažič, S., Škrjanc, I., Matko, D., 2014. A robust fuzzy
adaptive law for evolving control systems. Evolving
Systems. 5 (1), 3-10.
Costa, B. S. J., Angelov, P. P., Guedes, L. A., 2015.
Fully unsupervised fault detection and identification
based on recursive density estimation and self-
evolving cloud-based classifier, Neurocomputing.
150 (A), 289-303.
Derr, K. W., Manic, M., 2015. Wireless sensor networks
- node localization for various industry problems.
IEEE Transactions on Industrial Informatics. 11(3),
752-762.
Di Cairano, S., Bemporad, A., Kolmanovsky, I. V.,
Hrovat, D., 2007. Model predictive control of
magnetically actuated mass spring dampers for
automotive applications, International Journal of
Control. 80, 1701-1716.
Dragos, C.-A., Precup, R.-E., Preitl, S., Petriu, E. M.,
Stinean, A.-I., 2012a. Takagi-Sugeno fuzzy control
solutions for mechatronic applications, International
Journal of Artificial Intelligence. 8 (S12), 45-65.
Dragos, C.-A., Preitl, S., Precup, R.-E., Petriu, E. M.,
Stinean, A.-I., 2012b. Adaptive control solutions for
the position control of electromagnetic actuated
clutch systems. In Proceedings of 2012 IEEE
Intelligent Vehicles Symposium. Alcala de Henares,
Spain, 81-86.
Dumitrache, I., Constantin, N., Drăgoicea, M., 1999.
Retele neurale: identificarea si conducerea
proceselor. Matrix Rom, Bucharest.
Fan, Z., Liu, X., 2016. Energy synchronized
transmission control for energy-harvesting sensor
networks. International Journal of Computers
Communications and Control. 11 (21), 194-208.
Filip, F. G., 2008. Decision support and control for
large-scale complex systems. Annual Reviews in
Control. 32 (1), 61-70.
Fioriti, V., Chinnici, M., 2017. Node seniority ranking in
networks. Studies in Informatics and Control. 26 (4),
397-402.
Fozo, L., Andoga, R., Beneda, K., Kolesár, J., 2017.
Effect of operating point selection on non-linear
experimental identification of iSTC-21v and TKT-1
small turbojet engines. Periodica Polytechnica
Transportation Engineering. 45 (3), 141-147.
Gao, B., Chen, H., Liu, Q., Chu, H., 2014. Position
control of electric clutch actuator using a triple-step
nonlinear method, IEEE Transactions on Industrial
Electronics. 61 (12), 6995-7003.
Haidegger, T., Kovács, L., Precup, R.-E., Benyó, B.,
Benyó, Z., Preitl, S., 2012. Simulation and control
for telerobots in space medicine. Acta Astronautica.
181 (1), 390-402.
Korondi, P., Hashimoto, H., Gajdar, T., Suto, Z., 1996.
Optimal sliding mode design for motion control. In
Proceedings of 1996 IEEE International Symposium
on Industrial Electronics. Warsaw, Poland, 277-282.
Losero, R., Guerra, T.-M., Lauber, J., Maurel, P., 2016.
Electro-mechanical clutch actuator control based on
output switched Takagi-Sugeno controller. IFAC-
PapersOnLine, 49 (5), 85-90.
Oh, J. J., Choi, S. B., Kim, J., 2014. Driveline modeling
and estimation of individual clutch torque during
gear shifts for dual clutch transmission.
Mechatronics. 24 (5), 449-463.
Osaba, E., Yang, X.-S., Diaz, F., Onieva, E., Masegosa,
A., Perallos, A., 2017. A discrete firefly algorithm to