the Spanish Government and the European Regio-
nal Development fund- ERFD (PhysComp project,
TIN2017-85409-P).
REFERENCES
Benedek, M. and Kaernbach, C. (2010). Decomposition of
skin conductance data by means of nonnegative de-
convolution. Psychophysiology, 47(4):647–658.
Cacioppo, J. T., Tassinary, L. G., and Berntson, G. (2007).
Handbook of psychophysiology. Cambridge: Cam-
bridge University Press.
Canento, F., Fred, A., Silva, H., Gamboa, H., and Loureno,
A. (2011). Multimodal biosignal sensor data handling
for emotion recognition. In Sensors, pages 647–6507.
IEEE.
Cannon, W. (1935). Stresses and strains of homeosta-
sis. The American Journal of the Medical Sciences,
189(1):13–14.
Carcreff, L., Gerber, C. N., Paraschiv-Ionescu, A., Cou-
lon, G. D., Newman, C., Armand, S., and Aminian,
K. (2018). What is the best configuration of wearable
sensors to measure spatiotemporal gait parameters in
children with cerebral palsy? Sensors, 18(2):394.
Gilman, T. L., Shaheen, R., Nylocks, K. M., Chapman, J.,
Flynn, J. J., and Coifman, K. G. (2017). A film set for
the elicitation of emotion in research: A comprehen-
sive catalog derived from four decades of investiga-
tion. Behavior research methods, 49(6):2061–2082.
Giusiano, N., Jimeno, M. T., Collignon, P., and Chau, Y.
(1995). Utilization of a neural network in the elabo-
ration of an evaluation scale for pain in cerebral palsy.
Methods of Information in Medicine, 34(5):498–502.
Gross, J. and Levenson, R. (1995). Emotion elicitation
using films. Cognition & emotion, 9(1), 9(1):87–108.
Johnson, K. T. and Picard, R. W. (2017). Spring: Customi-
zable, motivation-driven technology for children with
autism or neurodevelopmental differences. In Procee-
dings of Interaction Design and Children (IDC’17).
ACM.
Kim, L. and Andr, E. (2008). Emotion recognition based
on physiological changes in music listening. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 30(12):2067 – 2083.
Kreibig, S. D. (2010). Autonomic nervous system acti-
vity in emotion: a review. Biological Psychology,
84(3):394–421.
Martinez, R., Irigoyen, E., Arruti, A., Martin, J. I., and Mu-
guerza, J. (2017). A real-time stress classification sy-
stem based on arousal analysis of the nervous system
by an f-state machine. Computer methods and pro-
grams in biomedicine, 148:81–90.
Martinez, R., Irigoyen, E., Lopez de Ipi
˜
na, K., Asla, N., and
Garay, N. (2009). Dise
˜
no de un gestor de emociones
para la mejora de un tutor inteligente dirigido a la in-
tegraci
´
on de personas con discapacidad intelectual. In
Congreso Internacional de Inteligencia Emocional.
P
´
erez-Lloret, S., Diez, J., Dom
´
e, M. N., Delvenne, A. A.,
Braidot, N., Cardinali, D. P., and Vigo, D. E.
(2014). Effects of different “relaxing” music styles
on the autonomic nervous system. Noise and Health,
16(72):279–284.
Picard, R. W. (2010). Affective computing: from laughter
to ieee. IEEE Transactions on Affective Computing,
1(1):11–17.
Porges, S. W. (2001). The polyvagal theory: phylogenetic
substrates of a social nervous system. International
Journal of Psychophysiology, 42(2):123–146.
Rice, L. M., Wall, C. A., Fogel, A., and Shic, F. (2015).
Computer-assisted face processing instruction impro-
ves emotion recognition, mentalizing, and social skills
in students with asd. Journal of Autism and Develop-
mental Disorders, 45(7):2176–2186.
Schachter, S. and Singer, J. E. (1962). Cognitive, social, and
physiological determinants of emotional state. Psy-
chological review, 69(5):379–399.
Soegaard, M. and Dam, R. F. (2013). The encyclopedia
of human-computer interaction. Interaction Design
Foundation.
Soleymani, M., Pantic, M., and Pun, T. (2015). Multimodal
emotion recognition in response to videos. In Interna-
tional Conference on Affective Computing and Intelli-
gent Interaction (ACII), pages 491–497. IEEE.
Thayer, J. F., Yamamoto, S. S., and Brosschot, J. F. (2010).
The relationship of autonomic imbalance, heart rate
variability and cardiovascular disease risk factors. In-
ternational Journal of Cardiology, 141(2):122–131.
Verduyn, P. and Lavrijsen, S. (2015). Which emotions last
longest and why: The role of event importance and
rumination. Motivation and Emotion, 39(1):119–127.
NEUROTECHNIX 2018 - 6th International Congress on Neurotechnology, Electronics and Informatics
52