REFERENCES
Bäck, T. (1996) Evolutionary Algorithms in Theory and
Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms, Science.
Barrière, O. and Lutton, E. (2009) ‘Experimental analysis
of a variable size mono-population cooperative-
coevolution strategy’, in Studies in Computational
Intelligence, pp. 139–152. doi: 10.1007/978-3-642-
03211-0_12.
Brest, J., Zumer, V. and Maucec, M. S. (2006) ‘Self-
Adaptive Differential Evolution Algorithm in
Constrained Real-Parameter Optimization’, 2006 IEEE
International Conference on Evolutionary
Computation, pp. 215–222. doi: 10.1109/CEC.2006.16
88311.
Gagn, C. (2012) ‘DEAP : Evolutionary Algorithms Made
Easy’, Journal of Machine Learning Research, 13, pp.
2171–2175. doi: 10.1.1.413.6512.
García-Pedrajas, N., Hervás-Martínez, C. and Muñoz-
Pérez, J. (2003) ‘COVNET: A cooperative
coevolutionary model for evolving artificial neural
networks’, IEEE Transactions on Neural Networks,
14(3), pp. 575–596. doi: 10.1109/TNN.2003.810618.
Jiang, B. and Wang, N. (2014) ‘Cooperative bare-bone
particle swarm optimization for data clustering’, Soft
Computing, 18(6). doi: 10.1007/s00500-013-1128-1.
Ke, T., Xiaodong, L., P. N., S., Zhenyu, Y., Thomas, W.,
(2010) ‘Benchmark Functions for the CEC’2010
Special Session and Competition on Large-Scale
Global Optimization’. Technical report, Univ. of
Science and Technology of China 1–23.
Liang, J. J. and Suganthan, P. N. (2005) ‘Dynamic multi-
swarm particle swarm optimizer’, in Proceedings -
2005 IEEE Swarm Intelligence Symposium, SIS 2005,
pp. 127–132. doi: 10.1109/SIS.2005.1501611.
Lin, L., Gen, M. and Liang, Y. (2014) ‘A hybrid EA for
high-dimensional subspace clustering problem’, in
Proceedings of the 2014 IEEE Congress on
Evolutionary Computation, CEC 2014, pp. 2855–2860.
doi: 10.1109/CEC.2014.6900313.
Liu, Y. et al. (2001) ‘Scaling up fast evolutionary
programming with cooperative coevolution’, in
Proceedings of the 2001 Congress on Evolutionary
Computation (IEEE Cat. No.01TH8546), pp. 1101–
1108. doi: 10.1109/CEC.2001.934314.
Mei, Y., Li, X. and Yao, X. (2014) ‘Variable neighborhood
decomposition for Large Scale Capacitated Arc
Routing Problem’, in Proceedings of the 2014 IEEE
Congress on Evolutionary Computation, CEC 2014, pp.
1313–1320. doi: 10.1109/CEC.2014.6900305.
Omidvar, M. N. et al. (2014) ‘Cooperative co-evolution
with differential grouping for large scale optimization’,
IEEE Transactions on Evolutionary Computation,
18(3), pp. 378–393. doi: 10.1109/TEVC.2013.22
81543.
Potter, M. A. and Jong, K. A. (1994) ‘A cooperative
coevolutionary approach to function optimization’, pp.
249–257. doi: 10.1007/3-540-58484-6_269.
Potter, M. A. and Jong, K. A. De (2000) ‘Cooperative
Coevolution: An Architecture for Evolving Coadapted
Subcomponents’, Evolutionary Computation, 8(1), pp.
1–29. doi: 10.1162/106365600568086.
Storn, R. and Price, K. (1995) ‘Differential Evolution - A
simple and efficient adaptive scheme for global
optimization over continuous spaces’, Technical report,
International Computer Science Institute, (TR-95-012),
pp. 1–15. doi: 10.1023/A:1008202821328.
Yang, Q. et al. (2017) ‘A Level-based Learning Swarm
Optimizer for Large Scale Optimization’, IEEE
Transactions on Evolutionary Computation. doi:
10.1109/TEVC.2017.2743016.
Yang, Z., Tang, K. and Yao, X. (2008a) ‘Multilevel
cooperative coevolution for large scale optimization’,
in 2008 IEEE Congress on Evolutionary Computation,
CEC 2008, pp. 1663–1670. doi: 10.1109/CEC.2008.46
31014.
Yang, Z., Tang, K. and Yao, X. (2008b) ‘Self-adaptive
differential evolution with neighborhood search’, in
2008 IEEE Congress on Evolutionary Computation,
CEC 2008, pp. 1110–1116. doi: 10.1109/CEC.2008.46
30935.
Yang, Z., Tang, K. and Yao, X. (2008c) ‘Large scale
evolutionary optimization using cooperative
coevolution’, Information Sciences, 178(15), pp. 2985–
2999. doi: 10.1016/j.ins.2008.02.017.
APPENDIX
Table 1: Runtime of 10000 FEs (in seconds) on the CEC’10 LSGO benchmark problems.
Func. № F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
Time 0.396 0.209 0.21 0.52 0.334 0.34 0.309 0.307 1.312 1.134
Func. № F11 F12 F13 F14 F15 F16 F17 F18 F19 F20
Time 1.139 0.112 0.126 2.219 2.016 2.04 0.077 0.133 0.072 0.1