Dai, Y., Song, L., and Cui, S. (2007). Development of pmsm
drives for hybrid electric car applications. IEEE Trans.
Magn., 43(1):434–437.
Deb, K. (2000). An efficient constraint handling method for
genetic algorithms. Comput. Meth. Appl. Mech. Eng.,
186(2-4):311–338.
Franklin, G. F., Powell, J. D., and Workman, M. L. (1998).
Digital control of dynamic systems. Addison-Wesley
Menlo Park, CA.
Gionfra, N., Sandou, G., Siguerdidjane, H., Loevenbruck,
P., and Faille, D. (2017). A novel distributed particle
swarm optimization algorithm for the optimal power
flow problem. In IEEE CCTA Conf., pages 656–661.
Grzesiak, L. M. and Tarczewski, T. (2011). Permanent mag-
net synchronous motor discrete linear quadratic speed
controller. In 2011 IEEE ISIE Symp., pages 667–672.
Grzesiak, L. M. and Tarczewski, T. (2012). PMSM ser-
vodrive control system with a state feedback and a
load torque feedforward compensation. COMPEL,
32(1):364–382.
Hestenes, M. R. (1969). Multiplier and gradient methods.
J. Optim. Theory Appl., 4(5):303–320.
Kaminski, M. and Najdek, K. (2018). Adaptive neural con-
troller based on RBF model applied for electrical drive
with PMSM motor. Przeglad Elektrotechniczny, pages
94–98 (in Polish).
Karaboga, D. and Basturk, B. (2007). A powerful and ef-
ficient algorithm for numerical function optimization:
artificial bee colony (ABC) algorithm. J. Glob. Op-
tim., 39(3):459–471.
Karaboga, D. and Basturk, B. (2008). On the performance
of artificial bee colony (ABC) algorithm. Appl. Soft.
Comput., 8(1):687–697.
Khalilpourazari, S. and Khalilpourazary, S. (2018). Opti-
mization of production time in the multi-pass milling
process via a robust grey wolf optimizer. Neural Com-
puting and Applications, 29(12):1321–1336.
Lin, F.-J., Shieh, H.-J., Shieh, P.-H., and Shen, P.-H. (2006).
An adaptive recurrent-neural-network motion control-
ler for X-Y table in CNC Machine. IEEE Trans. Syst.
Man Cybern. Part B-Cybern., 36(2):286–299.
Liu, X., Chen, H., Zhao, J., and Belahcen, A. (2016). Re-
search on the performances and parameters of interior
pmsm used for electric vehicles. IEEE Transactions
on Industrial Electronics, 63(6):3533–3545.
Long, W., Liang, X., Cai, S., Jiao, J., and Zhang, W. (2017).
An improved artificial bee colony with modified aug-
mented Lagrangian for constrained optimization. Soft
Comput.
Mezura-Montes, E. and Coello, C. A. C. (2011). Constraint-
handling in nature-inspired numerical optimization:
past, present and future. Swarm Evol. Comput.,
1(4):173–194.
Powell, M. (1967). ”A method for non-linear constraints in
minimization problems”. Atomic Energy Res. Estab.
Theoretical Physics Div. ; AERE TP 310. U.K.A.E.A.
Rockafellar, R. T. (1974). Augmented lagrange multi-
plier functions and duality in nonconvex program-
ming. SIAM J. Control, 12(2):268–285.
Senberber, H. and Bagis, A. (2017). Fractional pid con-
troller design for fractional order systems using abc
algorithm. In Electronics, 2017, pages 1–7. IEEE.
Szczepanski, R., Erwinski, K., and Paprocki, M. (2017).
Accelerating PSO based feedrate optimization for
NURBS toolpaths using parallel computation with
OpenMP. In 22nd Int. MMAR Conf., pages 431–436.
Tarczewski, T. and Grzesiak, L. M. (2016). Constrained
state feedback speed control of PMSM based on mo-
del predictive approach. IEEE Trans. Ind. Electron.,
63(6):3867–3875.
Tarczewski, T. and Grzesiak, L. M. (2018). An applica-
tion of novel nature-inspired optimization algorithms
to auto-tuning state feedback speed controller for
PMSM. IEEE Trans. Ind. Appl., 54(3):2913–2925.
Wang, X., Ufnalski, B., and Grzesiak, L. M. (2016). Adap-
tive speed control in the PMSM drive for a non-
stationary repetitive process using particle swarms.
In Compatibility, Power Electronics and Power Engi-
neering (CPE-POWERENG), 2016 10th International
Conference on, pages 464–471. IEEE.
ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics
276