5 CONCLUSIONS
In this paper, current research results in evaluation
of simulation strategies for deep drawing processes
with superimposed low-frequency vibrations on
servo-screw presses are presented. A method for the
determination and assessment of single force
components was developed to enable a comparison
between conventional deep drawing, cushion
pulsation and cushion-ram pulsation. In addition
special test setups required for experimental
investigations as well as corresponding simulation
models were designed. A good agreement of the
results has been achieved in preliminary
investigations. The simulation models can be used to
determine further components of total deep drawing
force.
The core idea of the research project is the
evaluation and improvement of simulation strategies
for deep drawing technologies with variable motion
paths on servo-screw presses. For this reason, in the
next step, the single force components of cushion
pulsation and cushion ram pulsation have to be
investigated in experimental and numerical tests.
Subsequently experimentally determined parameters
are numerically evaluated. Then they can be used as
a boundary condition in the process simulation.
Furthermore, process parameters with low impact
have to be identified and eliminated in a sensitivity
analysis. The individual sensitivities are determined
using a DoE (Design of Experiments) method
known from statistical experimental design. The
sensitivity analysis yields a meta-model that
characterizes the relationship between the input and
output variables. This will result in an efficient
simulation model, which is quantitatively secured. In
future investigations, the individual force
components, which were not accessible in a direct
force measurement experiment or falsified by
experimental constraints, will be determined from
the validated models.
ACKNOWLEDGEMENTS
The presented results of this paper are part of a
public research project. The project (SCHL 2048/3-1
LA 3752/1-1) is financed by the research association
“Deutsche Forschungsgemeinschaft” (DFG). The
financial support is gratefully acknowledged by the
authors.
REFERENCES
Denkena, B., Hollmann, F. (2013). Process Machine
Interactions. Springer Verlag, Berlin, pp. 383-401.
Doege, E. (2000). Schwingende Niederhalterkraft
verbessert die Tiefziehergebnisse. MM -
Maschinenmarkt, 106(37), pp. 28-30
Drossel, W.-G., Müller, P., Großmann, K., Schenke, C.
(2013). Modellierung von Prozessen auf Servo-
Pressen. EFB-Report 367, Hannover.
Fiat AUTO S.p.a. Pr. (1994). Process and hydraulic press
for the pressing of sheets. EP0613740B1.
Großmann, K., Neugebauer, R. (2010).
Simulationsunterstützung für das Tiefziehen auf
Servospindelpressen. In: 30. EFB-Kolloquium:
Blechverarbeitung, Bad Boll.
Kitayama, S., Natsume, S., Yamazaki, K., Han, J., Uchida,
H. (2016). Numerical investigation and optimization
of pulsating and variable blank holder force for
identification of formability window for deep drawing
of cylindrical cup. International Journal of Advanced
Manufacturing Technology, 82(1-4), pp. 583–593
Klose, L., Bräunlich, H. (2000). Erweiterung
umformtechnischer Grenzen durch vibrations-
überlagerten Tiefziehprozess. Forschung für die
Praxis, 383, pp. 1-64.
Kriechenbauer, S., Mauermann, R., Müller, P. (2014).
Deep drawing with superimposed low-frequency
vibrations on servo-screw presses. In: Procedia
Engineering, 81, pp. 905-913.
Mauermann, R. (2010). Synchroziehen eine
Tiefziehvariante. UTFscience, 2, pp. 1-5.
Netsch, T. (1994). Methoden zur Ermittlung von
Reibmodellen für die Blechumformung. PhD thesis,
Technische Universität Darmstadt.
Neugebauer, R., Drossel, W.-G., Kriechenbauer, S.
(2012). Erweiterung der Umformgrenzen mit Direkt-
Servo-Spindelpressen. EFB-Report 354, Hannover.
Nezami, S., Akbari, A., Ahangar, S. (2017). Parametric
investigation of pulsating blank holder’s effect in deep
drawing process of rectangular Al 1050 Cup. Journal
of the Brazilian Society of Mechanical Sciences and
Engineering, 39(10), pp. 4081-4090
Pankin, W. (1961). Die Grundlagen des Tiefziehens im
Anschlag unter besonderer Berücksichtigung der
Tiefziehprüfung. Bänder Blech Rohre, 4, pp. 133-143.
Roll, K. (2012). Sheet metal forming simulation for
automotive applications. In: Deutsch-französische
Sommerschule: Verfestigung und Schädigung von
Metallwerkstoffen unter großen Dehnungen –
Konstitutive Modellierung und numerische
Implementierung, Dortmund.
Siebel, E., Beisswänger, H. (1955). Tiefziehen. Hanser
Verlag, München.
Siegert, K., Ulmer, J. (2001). Influencing the Friction in
Metal Forming Processes by Superimposing
Ultrasonic Waves. In: CIRP Annals - Manufacturing
Technology, 50(1), pp. 195-200.