Kamavuako, E. N., Farina, D., Yoshida, K., and Jensen, W.
(2012). Estimation of grasping force from features of
intramuscular emg signals with mirrored bilateral trai-
ning. Annals of Biomedical Engineering, 40(3):648–
656.
Karlik, B. (2014). Machine learning algorithms for cha-
racterization of emg signals. International Journal of
Information and Electronics Engineering, 4(3):189 –
194.
Khezri, M. and Jahed, M. (2011). A neuro-fuzzy inference
system for semg-based identification of hand motion
commands. IEEE Transactions on Industrial Electro-
nics, 58(5):1952–1960.
Kocyigit, Y., Karlik, B., and Korurek, M. (1996). Emg
pattern discrimination for patient-response control of
fes in paraplegics for walker supported using artifical
neural network (ann). In Proceedings of 8th Mediter-
ranean Electrotechnical Conference on Industrial Ap-
plications in Power Systems, Computer Science and
Telecommunications (MELECON 96), volume 3, pa-
ges 1439–1441 vol.3.
LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep
learning. Nature, 521(7553):436–444.
Liang, M. and Hu, X. (2015). Recurrent convolutional neu-
ral network for object recognition. In IEEE Confe-
rence on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pa-
ges 3367–3375.
Lin, M., Chen, Q., and Yan, S. (2013). Network in network.
CoRR, abs/1312.4400.
Luong, M., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser,
L. (2015). Multi-task sequence to sequence learning.
CoRR, abs/1511.06114.
Matsumura, Y., Mitsukura, Y., Fukumi, M., Akamatsu, N.,
Yamamoto, Y., and Nakaura, K. (2002). Recognition
of emg signal patterns by neural networks. In Neu-
ral Information Processing, 2002. ICONIP ’02. Pro-
ceedings of the 9th International Conference on, vo-
lume 2, pages 750–754 vol.2.
Merletti, R. and Farina, D. (2009). Analysis of intramuscu-
lar electromyogram signals. Philosophical Transacti-
ons of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 367(1887):357–
368.
Moital, A. R., Dogramadzi, S., and Ferreira, H. A. (2015).
Development of an emg controlled hand exoskeleton
for post-stroke rehabilitation. In Proceedings of the
3rd 2015 Workshop on ICTs for Improving Patients
Rehabilitation Research Techniques, REHAB ’15, pa-
ges 66–72, New York, NY, USA. ACM.
Mulas, M., Folgheraiter, M., and Gini, G. (2005). An emg-
controlled exoskeleton for hand rehabilitation. In 9th
International Conference on Rehabilitation Robotics,
2005. ICORR 2005., pages 371–374.
Park, T. A. and Harris, G. (1996). ”Guided” intramuscu-
lar fine wire electrode placement. A new technique.
American journal of physical medicine & rehabilita-
tion, 75:232–4.
Rubin, J., Abreu, R., Ganguli, A., Nelaturi, S., Matei, I.,
and Sricharan, K. (2017). Recognizing abnormal he-
art sounds using deep learning. In Proceedings of the
2nd International Workshop on Knowledge Discovery
in Healthcare Data Co-located with the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI 2017), Melbourne, Australia, August 20, 2017.,
pages 13–19.
Rudroff, T. (2008). Kinesiological fine wire emg. A practi-
cal introduction to fine wire EMG applications.
Soares, A., Andrade, A., Lamounier, E., and Carrijo, R.
(2003). The development of a virtual myoelectric
prosthesis controlled by an emg pattern recognition
system based on neural networks. Journal of Intel-
ligent Information Systems, 21(2):127–141.
Steens, A., Heersema, D., Maurits, N., Renken, R., and Zi-
jdewind, I. (2012). Mechanisms underlying muscle
fatigue differ between multiple sclerosis patients and
controls: A combined electrophysiological and neu-
roimaging study. NeuroImage, 59(4):3110 – 3118.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 2818–
2826.
Yang, X., Yeh, S.-C., Niu, J., Gong, Y., and Yang, G. (2017).
Hand rehabilitation using virtual reality electromyo-
graphy signals. 2017 5th International Conference on
Enterprise Systems (ES), pages 125–131.
Zazula, D., Korosec, D., and Sostaric, A. (1998). Computer-
assisted decomposition of the electromyograms. In
Proceedings. 11th IEEE Symposium on Computer-
Based Medical Systems (Cat. No.98CB36237), pages
26–31.
Identifying Electromyography Sensor Placement using Dense Neural Networks
141