Chowdhury, S. A. and Hindle, A. (2016). GreenOracle: Es-
timating Software Energy Consumption with Energy
Measurement Corpora. In Proc. 13th Int. Work. Min.
Softw. Repos. - MSR ’16, pages 49–60, New York,
New York, USA. ACM Press.
Di Nucci, D., Palomba, F., Prota, A., Panichella, A., Zaid-
man, A., and De Lucia, A. (2017a). PETrA: A
Software-Based Tool for Estimating the Energy Pro-
file of Android Applications. In 2017 IEEE/ACM 39th
Int. Conf. Softw. Eng. Companion, pages 3–6. IEEE.
Di Nucci, D., Palomba, F., Prota, A., Panichella, A., Zaid-
man, A., and De Lucia, A. (2017b). Software-based
energy profiling of Android apps: Simple, efficient
and reliable? In SANER 2017 - 24th IEEE Int. Conf.
Softw. Anal. Evol. Reengineering, volume 15, pages
103–114. IEEE.
Djedidi, O., Djeziri, M. A., M’Sirdi, N. K., and Naa-
mane, A. (2017). Modular Modelling of an Embed-
ded Mobile CPU-GPU Chip for Feature Estimation.
In Proc. 14th Int. Conf. Informatics Control. Autom.
Robot., volume 1, pages 338–345, Mardrid, Spain.
SCITEPRESS - Science and Technology Publications.
Dong, M. and Zhong, L. (2011). Self-constructive high-rate
system energy modeling for battery-powered mobile
systems. In MobiSys, page 335, New York, New York,
USA. ACM Press.
Google Inc. (2017). Measuring Power Values — Android
Open Source Project.
Gordon, M., Zhang, L., and Tiwana, B. (2011). PowerTutor.
Guo, Y., Wang, C., and Chen, X. (2017). Understand-
ing application-battery interactions on smartphones:
A large-scale empirical study. IEEE Access, 5:13387–
13400.
Hoque, M. A., Siekkinen, M., Khan, K. N., Xiao, Y., and
Tarkoma, S. (2015). Modeling, Profiling, and De-
bugging the Energy Consumption of Mobile Devices.
ACM Comput. Surv., 48(3):1–40.
Huang, J., Li, R., An, J., Ntalasha, D., Yang, F., and Li,
K. (2017). Energy-Efficient Resource Utilization for
Heterogeneous Embedded Computing Systems. IEEE
Trans. Comput., 66(9):1518–1531.
Jung, W., Kang, C., Yoon, C., Kim, D. D., and Cha, H.
(2012). DevScope: A Nonintrusive and Online Power
Analysis Tool for Smartphone Hardware Compo-
nents. Proc. eighth IEEE/ACM/IFIP Int. Conf. Hard-
ware/software codesign Syst. Synth. - CODES+ISSS
’12, page 353.
Kim, D., Chon, Y., Jung, W., Kim, Y., and Cha, H. (2016).
Accurate Prediction of Available Battery Time for
Mobile Applications. ACM Trans. Embed. Comput.
Syst., 15(3):1–17.
Kim, K., Shin, D., Xie, Q., Wang, Y., Pedram, M., and
Chang, N. (2014). FEPMA: Fine-Grained Event-
Driven Power Meter for Android Smartphones Based
on Device Driver Layer Event Monitoring. In Des.
Autom. Test Eur. Conf. Exhib., pages 1–6, New Jersey.
IEEE Conference Publications.
Kim, M. and Chung, S. W. (2013). Accurate GPU power es-
timation for mobile device power profiling. Dig. Tech.
Pap. - IEEE Int. Conf. Consum. Electron., pages 183–
184.
Kim, M., Kong, J., and Chung, S. W. (2012). Enhancing
online power estimation accuracy for smartphones.
IEEE Trans. Consum. Electron., 58(2):333–339.
Kim, Y. G., Kim, M., Kim, J. M., Sung, M., and Chung,
S. W. (2015). A novel GPU power model for accurate
smartphone power breakdown. ETRI J., 37(1):157–
164.
Mittal, R., Kansal, A., and Chandra, R. (2012). Empow-
ering developers to estimate app energy consumption.
In Proc. 18th Annu. Int. Conf. Mob. Comput. Netw. -
Mobicom ’12, page 317, New York, New York, USA.
ACM Press.
Pathak, A., Hu, Y. C., and Zhang, M. (2012). Where is the
Energy Spent Inside My App?: Fine Grained Energy
Accounting on Smartphones with Eprof. In Proc. 7th
ACM Eur. Conf. Comput. Syst., EuroSys ’12, pages
29–42, New York, NY, USA. ACM.
Qualcomm Innovation Center, I. Trepn Profiler - Android
Apps on Google Play.
Shukla, N. K., Pila, R., and Rawat, S. (2016). Utilization-
based power consumption profiling in smartphones. In
Proc. 2016 2nd Int. Conf. Contemp. Comput. Infor-
matics, IC3I 2016, pages 881–886. IEEE.
Shye, A., Scholbrock, B., and Memik, G. (2009). Into
the wild: Studying real user activity patterns to guide
power optimizations for mobile architectures. Micro,
pages 168–178.
Walker, M. J., Diestelhorst, S., Hansson, A., Das, A. K.,
Yang, S., Al-Hashimi, B. M., and Merrett, G. V.
(2017). Accurate and Stable Run-Time Power Mod-
eling for Mobile and Embedded CPUs. IEEE Trans.
Comput. Des. Integr. Circuits Syst., 36(1):106–119.
Xie, H., Tang, H., and Liao, Y. H. (2009). Time series pre-
diction based on narx neural networks: An advanced
approach. In Proc. 2009 Int. Conf. Mach. Learn. Cy-
bern., volume 3, pages 1275–1279. IEEE.
Xu, F., Liu, Y., Li, Q., and Zhang, Y. (2013). V-edge:
fast self-constructive power modeling of smartphones
based on battery voltage dynamics. In nsdi’13 Proc.
10th USENIX Conf. Networked Syst. Des. Implement.,
pages 43–55. USENIX Association.
Yoon, C., Lee, S., Choi, Y., Ha, R., and Cha, H. (2017). Ac-
curate power modeling of modern mobile application
processors. J. Syst. Archit., 81:17–31.
Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao,
Z. M., and Yang, L. (2010). Accurate online power es-
timation and automatic battery behavior based power
model generation for smartphones. In Proc. eighth
IEEE/ACM/IFIP Int. Conf. Hardware/software code-
sign Syst. Synth. - CODES/ISSS ’10, page 105, New
York, New York, USA. ACM Press.
A Novel Easy-to-construct Power Model for Embedded and Mobile Systems - Using Recursive Neural Nets to Estimate Power Consumption
of ARM-based Embedded Systems and Mobile Devices
545