ous state and noise bounds estimation and involve-
ment of other bounded distributions to generalise the
class of used pdfs.
ACKNOWLEDGEMENTS
This research was partially supported by the grant
GA
ˇ
CR 18-15970S.
REFERENCES
Azizi, S. and Quinn, A. (2018). Hierarchical Fully Proba-
bilistic Design for Deliberator-Based Merging in Mul-
tiple Participant Systems. IEEE Transactions on Sys-
tems Man Cybernetics-Systems, 48(4):565–573.
Becis-Aubry, Y., Boutayeb, M., and Darouach, M. (2008).
State estimation in the presence of bounded distur-
bances. Automatica, 44:1867–1873.
Bernardo, J. M. (1979). Expected information as expected
utility. The Annals of Statistics, 7(3):686–690.
Chisci, L., Garulli, A., and Zappa, G. (1996). Recur-
sive state bounding by parallelotopes. AUTOMATICA,
32(7):1049–1055.
Combastel, C. (2015). Zonotopes and Kalman observers:
Gain optimality under distinct uncertainty paradigms
and robust convergence. Automatica, 55:265 – 273.
Coxeter, H. S. M. (1973). Regular polytopes. Courier Cor-
poration.
Dabbene, F., Sznaier, M., and Tempo, R. (2014). Proba-
bilistic optimal estimation with uniformly distributed
noise. IEEE Transactions on Automatic Control,
59(8):2113–2127.
Fletcher, R. (2000). Practical Methods of Optimization.
John Wiley & Sons. ISBN: 0471494631.
Jazwinski, A. M. (1970). Stochastic Processes and Filtering
Theory. Academic Press, New York.
K
´
arn
´
y, M., B
¨
ohm, J., Guy, T. V., Jirsa, L., Nagy, I., Ne-
doma, P., and Tesa
ˇ
r, L. (2005). Optimized Bayesian
Dynamic Advising: Theory and Algorithms. Springer,
London.
Kullback, S. and Leibler, R. (1951). On information and
sufficiency. Annals of Mathematical Statistics, 22:79–
87.
Lang, L., Chen, W., Bakshi, B. R., Goel, P. K., and Un-
garala, S. (2007). Bayesian estimation via sequential
Monte Carlo sampling – Constrained dynamic sys-
tems. Automatica, 43(9):1615–1622.
Pavelkov
´
a, L. and Jirsa, L. (2017). Recursive Bayesian esti-
mation of uniform autoregressive model using approx-
imation by parallelotopes. International Journal of
Adaptive Control and Signal Processing, 31(8):1184–
1192.
Pavelkov
´
a, L. and K
´
arn
´
y, M. (2014). State and parameter
estimation of state-space model with entry-wise corre-
lated uniform noise. International Journal of Adaptive
Control and Signal Processing, 28(11):1189–1205.
DOI: 10.1002/acs.2438.
Shao, X., Huang, B., and Lee, J. M. (2010). Constrained
Bayesian state estimation - A comparative study and a
new particle filter based approach. Journal of Process
Control, 20(1):143–157.
Simon, D. and Simon, D. L. (2010). Constrained
Kalman filtering via density function truncation
for turbofan engine health estimation. Inter-
national Journal of Systems Science, 41:159–171.
www.informaworld.com/10.1080/00207720903042970.
Vicino, A. and Zappa, G. (1996). Sequential approximation
of feasible parameter sets for identification with set
membership uncertainty. IEEE Transactions on Auto-
matic Control, 41(6):774–785.
A APPENDIX
A.1 Approximation of the Trapezoidal
Pdf
According to (Bernardo, 1979), minimisation od
Kullback-Liebler divergence (Kullback and Leibler,
1951) (KLD) gives, in a Bayesian sense, an optimal
approximation of pdf. KLD of two pdfs, f
1
and f
2
,
equals D( f
1
|| f
2
) =
R
f
1
(x)ln
f
1
(x)
f
2
(x)
dx.
Denote the set describing the support χ
?
≡
supp(χ). Given pdf on a bounded support, f
1
(x) =
g(x)χ
1
(x), where 0 < g(x) < +∞ ∀x ∈ χ
?
1
, we search
for the optimal approximation by a uniform pdf,
f
2
(x) = I
−1
χ
2
(x), where I = vol(χ
?
2
). We look for
ˆ
f
2
= argmin
f
2
D( f
1
|| f
2
). Function arguments are omit-
ted.
Here, D( f
1
|| f
2
) =
R
gln
I gχ
1
χ
2
dx =
R
χ
?
1
gln gdx +
R
χ
?
1
gln
χ
1
χ
2
dx + lnI
R
χ
?
1
gdx. The first term is indepen-
dent of f
2
, the second term is finite (zero) if χ
?
1
⊂ χ
?
2
.
The third term depends on f
2
through I : the larger
support of f
2
, the higher I . Hence, to minimise KLD,
we minimise the measure of χ
?
2
choosing χ
2
= χ
1
, i.e.
ˆ
f
2
be the uniform pdf on the support of f
1
.
A.2 Approximation of the Polytope by
a Parallelotope
The second term in (11) can be understood as `
y
data strips in x
t
-space, y
t;i
− r
i
≤ C
i
x
t
≤ y
t;i
+ r
i
, i =
1,. .. ,`
y
. These strips intersect with `
x
strips given by
the first term, which forms a parallelotope (actually
orthotope). The intersection defines a polytope which
is to be approximated by another parallelotope (12).
Theory and algorithm of the approximation is de-
scribed in (Vicino and Zappa, 1996). Briefly: (i) One
Approximate Recursive Bayesian Estimation of State Space Model with Uniform Noise
393