REFERENCES
Arendt, T., Mantz, F., Schneider, L., and Taentzer, G.
(2009). Model refactoring in eclipse by LTK, EWL,
and EMF refactor: a case study. In Model-Driven Soft-
ware Evolution, Workshop Models and Evolution.
Arendt, T. and Taentzer, G. (2010). UML model smells
and model refactorings in early software development
phases. Universitat Marburg.
Arisholm, E., Briand, L. C., Hove, S. E., and Labiche, Y.
(2006). The impact of UML documentation on soft-
ware maintenance: An experimental evaluation. IEEE
Transactions on Software Engineering, 32(6):365–
381.
Bennett, C., Myers, D., Storey, M.-A., German, D. M.,
Ouellet, D., Salois, M., and Charland, P. (2008). A
survey and evaluation of tool features for understan-
ding reverse-engineered sequence diagrams. Journal
of Software: Evolution and Process, 20(4):291–315.
Campbell, G. and Papapetrou, P. P. (2013). SonarQube in
action. Manning Publications Co.
CoderGears (2017). JArchitect. [last access: June 8, 2018].
Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and Figuei-
redo, E. (2016). A review-based comparative study
of bad smell detection tools. In Proceedings of the
20th International Conference on Evaluation and As-
sessment in Software Engineering, page 18. ACM.
Fern´andez-S´aez, A. M., Genero, M., Chaudron, M. R ., Cai-
vano, D., and Ramos, I. (2015). Are forward designed
or reverse-engineered UML diagrams more helpful for
code maintenance?: A family of experiments. Infor-
mation and Software Technology, 57:644–663.
Fontana, F. A., Braione, P., and Zanoni, M. (2012). Auto-
matic detection of bad smells in code: An experimen-
tal assessment. J. Object Technology, 11(2):5–1.
Fontana, F. A., Dietrich, J., Walter, B., Yamashita, A., and
Zanoni, M. (2016). Antipattern and code smell false
positives: Preliminary conceptualization and classifi-
cation. In Proc. SANER’16, volume 1, pages 609–613.
IEEE.
Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts,
D. (1999). Refactoring: improving the design of exis-
ting code. Addison-Wesley Professional.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley L ongman
Publishing Co., Inc., Boston, MA, USA.
Haendler, T., Sobernig, S., and Strembeck, M. (2015). Deri-
ving tailored UML interaction models from scenario-
based runtime tests. In International Conference on
Software Technologies, pages 326–348. Springer.
Haendler, T. , Sobernig, S., and Strembeck, M. (2017). To-
wards triaging code-smell candidates via runtime sce-
narios and method-call dependencies. In Proceedings
of the XP2017 Scientific Workshops, pages 1–9. ACM.
hello2morrow (2017). Sonargraph. [last access: June 8,
2018].
Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Techni-
cal debt: From metaphor to theory and practice. Ieee
software, 29(6):18–21.
Laitenberger, O., Atkinson, C., Schlich, M., and El Emam,
K. (2000). An experimental comparison of reading
techniques for defect detection in UML design docu-
ments. Journal of Systems and Software, 53(2):183–
204.
Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur,
A.-F. (2010). Decor: A method for the specification
and detection of code and design smells. IEEE Tran-
sactions on Software Engineering, 36(1):20–36.
Mohagheghi, P., Dehlen, V., and Neple, T. (2009). Defini-
tions and approaches t o model quality in model-based
software development–a review of literature. Informa-
tion and Software Technology, 51(12):1646–1669.
Object Management Group (2015). Unified Modeling Lan-
guage (UML), Superstructure, Version 2.5.0. [l ast
access: June 8, 2018].
Panichella, S., Arnaoudova, V., Di Penta, M., and Antoniol,
G. (2015). Would static analysis tools help developers
with code reviews? In Proc. SANER’15, pages 161–
170. IEE E.
Ribeiro, L. F., de Freitas Farias, M. A., Mendonc¸a, M. G.,
and Sp´ınola, R. O. (2016). Decision criteria for the
payment of technical debt in software projects: A sys-
tematic mapping study. In I CEIS (1), pages 572–579.
Rojas, G., Izurieta, C., and Griffith, I. (2017). Toward
technical debt aware software modeling. In IEEE-
ACM Ibero American Conference on Software Engi-
neering, CibSE, pages 22–35.
Scanniello, G., Gravino, C., Genero, M., Cruz-Lemus, J. A.,
Tortora, G., Risi, M., and Dodero, G. (2018). Do
software models based on the UML aid in source-
code comprehensibility? aggregating evidence from
12 controlled experiments. Empirical Software Engi-
neering, pages 1–39.
Sharp, R. and Rountev, A. (2005). Interactive explora-
tion of UML sequence diagrams. In Visualizing Soft-
ware for Understanding and Analysis, 2005. VIS-
SOFT 2005. 3rd IEE E International Workshop on, pa-
ges 1–6. IE EE.
Stroulia, E. and Syst¨a, T. (2002). Dynamic analysis for re-
verse engineering and program understanding. ACM
SIGAPP Applied Computing Review, 10(1):8–17.
Suny´e, G., Pollet, D., Le Traon, Y., and J´ez´equel, J.-M.
(2001). Refactoring UML models. In International
Conference on the Unified Modeling Language, pages
134–148. Springer.
Suryanarayana, G., Samarthyam, G., and Sharma, T.
(2014). Refactoring f or software design smells: ma-
naging technical debt. Morgan Kaufmann.
Tempero, E., Gorschek, T., and Angelis, L. (2017). Bar-
riers to refactoring. Communications of the ACM,
60(10):54–61.
Tsantalis, N. (2017). JDeodorant. [last access: June 8,
2018].
ZEN PROGRAM ( 2017). NDepend. [last access: June 8,
2018].