Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard,
J., and Dellaert, F. (2011). isam2: Incremental smoo-
thing and mapping with fluid relinearization and in-
cremental variable reordering. In IEEE International
Conference on Robotics and Automation, pages 3281–
3288.
Kaess, M., Ranganathan, A., and Dellaert, F. (2007). Fast
Incremental Square Root Information Smoothing. In
20th International Joint Conference on Artifical Intel-
ligence, pages 2129–2134. Morgan Kaufmann Publis-
hers Inc.
Kaess, M., Ranganathan, A., and Dellaert, F. (2008). iSAM:
Incremental Smoothing and Mapping. IEEE Tran-
sactions on Robotics, 24(6):1365–1378.
Kerl, C., Sturm, J., and Cremers, D. (2013). Dense visual
SLAM for RGB-D cameras. In IEEE/RSJ Internati-
onal Conference on Intelligent Robots and Systems,
pages 2100–2106.
K
¨
ummerle, R., Grisetti, G., Strasdat, H., Konolige, K., and
Burgard, W. (2011). G
2
o: A general framework for
graph optimization. In IEEE International Conference
on Robotics and Automation, pages 3607–3613.
Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., Klin-
gauf, U., and von Stryk, O. (2014). Hector Open
Source Modules for Autonomous Mapping and Navi-
gation with Rescue Robots. In RoboCup 2013: Robot
World Cup XVII, pages 624–631. Springer.
Konolige, K., Grisetti, G., K
¨
ummerle, R., Burgard, W.,
Limketkai, B., and Vincent, R. (2010). Effi-
cient Sparse Pose Adjustment for 2D mapping. In
IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems, pages 22–29.
Kwok, N. and Dissanayake, G. (2003). Bearing-only slam
in indoor environments using a modified particle filter.
In Australasian Conference on Robotics and Automa-
tion. University of Queensland.
Milford, M. J. and Wyeth, G. F. (2012). SeqSLAM: Visual
route-based navigation for sunny summer days and
stormy winter nights. In IEEE International Confe-
rence on Robotics and Automation, pages 1643–1649.
N
¨
uchter, A. (2008). 3D robotic mapping: the simultaneous
localization and mapping problem with six degrees of
freedom, volume 52. Springer.
Oursland, A. (2014). Java FastSLAM. http://
www.oursland.net/projects/fastslam/.
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS: an
open-source Robot Operating System. In ICRA works-
hop on open source software, volume 3, page 5.
Ranganathan, A., Kaess, M., and Dellaert, F. (2007). Loopy
SAM. In 20th International Joint Conference on Ar-
tifical Intelligence, pages 2191–2196. Morgan Kauf-
mann Publishers Inc.
Roussillon, C., Gonzalez, A., Sol
`
a, J., Codol, J.-M., Man-
sard, N., Lacroix, S., and Devy, M. (2011). RT-
SLAM: A Generic and Real-Time Visual SLAM Im-
plementation. In Computer Vision Systems, pages 31–
40. Springer.
Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly,
P. H., and Davison, A. J. (2013). Slam++: Simulta-
neous localisation and mapping at the level of objects.
In Computer Vision and Pattern Recognition, pages
1352–1359. IEEE.
Schroeter, C. and Gross, H. M. (2008). A sensor-
independent approach to RBPF SLAM - Map Match
SLAM applied to visual mapping. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, pages 2078–2083.
Stachniss, C., Frese, U., and Grisetti, G. (2007). OpenS-
LAM. http://www.openslam.org.
Steux, B. and Hamzaoui, O. E. (2010). tinySLAM: A
SLAM algorithm in less than 200 lines C-language
program. In 11th International Conference on Con-
trol Automation Robotics Vision, pages 1975–1979.
Thrun, S., Fox, D., and Burgard, W. (2006). Probabilistic
Robotics. The MIT Press.
Tiar, R., Ouadah, N., Azouaoui, O., Djehaich, M., Ziane,
H., and Achour, N. (2013). ICP-SLAM methods im-
plementation on a bi-steerable mobile robot. In IEEE
11th International Workshop of Electronics, Control,
Measurement, Signals and their application to Me-
chatronics, pages 1–6.
Walter, M. R., Eustice, R. M., and Leonard, J. J. (2007). Ex-
actly Sparse Extended Information Filters for Feature-
Based SLAM. The International Journal of Robotics
Research, 26(4):335–359.
Wang, H., Li, C., Lv, H., and Chen, X. (2012). Research on
compressed EKF based SLAM algorithm for unman-
ned underwater vehicle. In 15th International IEEE
Conference on Intelligent Transportation Systems, pa-
ges 1402–1406.
Wang, Z., Huang, S., and Dissanayake, G. (2007). D-
SLAM: Decoupled Localization and Mapping for Au-
tonomous Robots. In Thrun, S., Brooks, R., and
Durrant-Whyte, H., editors, Robotics Research, pages
203–213. Springer.
Weißleder, S. and Lackner, H. (2013). Zwei Ans
¨
atze
zur automatischen modellbasierten Generie-
rung von Testf
¨
allen f
¨
ur variantenreiche Systeme.
Softwaretechnik-Trends, 33(2).
Zhao, L., Huang, S., and Dissanayake, G. (2013). Linear
SLAM: A linear solution to the feature-based and pose
graph SLAM based on submap joining. In IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 24–30.
EDDY 2018 - Special Session on Adaptive Data Management meets Self-Adaptive Systems
418