cortical potentials for verbal communication. Ar-
chives of Physical Medicine and Rehabilitation,
82(11):1533–1539.
Lu, N., Li, T., Ren, X., and Miao, H. (2017). A deep le-
arning scheme for motor imagery classification based
on restricted boltzmann machines. IEEE Transacti-
ons on Neural Systems and Rehabilitation Engineer-
ing, 25(6):566–576.
Maimon-Mor, R. O., Fernandez-Quesada, J., Zito, G. A.,
Konnaris, C., Dziemian, S., and Faisal, A. A. (2017).
Towards free 3D end-point control for robotic-assisted
human reaching using binocular eye tracking. In 2017
International Conference on Rehabilitation Robotics
(ICORR), pages 1049–1054.
Makin, T. R., de Vignemont, F., and Faisal, A. A. (2017).
Neurocognitive barriers to the embodiment of techno-
logy. Nature Biomedical Engineering, 1:0014 EP.
Milln, J. R., Renkens, F., Mourio, J., and Gerstner, W.
(2004). Brain-actuated interaction. Artificial Intelli-
gence, 159(1):241 – 259.
M
¨
uller-Putz, G. R., Scherer, R., Brunner, C., Leeb, R., and
Pfurtscheller, G. (2008). Better than random: a closer
look on BCI results. International Journal of Bioelec-
tromagnetism, pages 52–55.
Neuper, C., Wrtz, M., and Pfurtscheller, G. (2006).
ERD/ERS patterns reflecting sensorimotor activation
and deactivation. In Neuper, C. and Klimesch, W.,
editors, Event-Related Dynamics of Brain Oscillati-
ons, volume 159 of Progress in Brain Research, pages
211 – 222. Elsevier.
Noronha, B., Dziemian, S., Zito, G. A., Konnaris, C., and
Faisal, A. A. (2017). Wink to grasp - comparing eye,
voice and EMG gesture control of grasp with soft-
robotic gloves. In 2017 International Conference on
Rehabilitation Robotics (ICORR), pages 1043–1048.
Obermaier, B., Neuper, C., Guger, C., and Pfurtschel-
ler, G. (2001). Information transfer rate in a five-
classes brain-computer interface. IEEE Transactions
on Neural Systems and Rehabilitation Engineering,
9(3):283–288.
Ortega, P., Colas, C., and Faisal, A. A. (2018a). Compact
convolutional neural networks for multi-class, perso-
nalised, closed-loop EEG-BCI. In 2018 IEEE Inter-
national Conference on Biomedical Robotics and Bi-
omechatronics (BioRob), 7th IEEE International Con-
ference (forthcoming).
Ortega, P., Colas, C., and Faisal, A. A. (2018b). Convoluti-
onal neural network, personalised, closed-loop brain-
computer interfaces for multi-way control mode swit-
ching in real-time. bioRxiv.
Ramoser, H., Muller-Gerking, J., and Pfurtscheller, G.
(2000). Optimal spatial filtering of single trial EEG
during imagined hand movement. IEEE Transactions
on Rehabilitation Engineering, 8(4):441–446.
Riener, R. and Seward, L. J. (2014). Cybathlon 2016.
In 2014 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 2792–2794.
Schwarz, A., Steyrl, D., and Mller-Putz, G. R. (2016).
Brain-computer interface adaptation for an end user
to compete in the Cybathlon. In 2016 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics
(SMC), pages 001803–001808.
Tabar, Y. R. and Halici, U. (2017). A novel deep learning
approach for classification of EEG motor imagery sig-
nals. Journal of Neural Engineering, 14(1):016003.
Tomioka, R., Aihara, K., and M
¨
uller, K. (2007). Logis-
tic regression for single trial EEG classification. In
Sch
¨
olkopf, B., Platt, J. C., and Hoffman, T., editors,
Advances in Neural Information Processing Systems
19, pages 1377–1384. MIT Press.
Tostado, P. M., Abbott, W. W., and Faisal, A. A. (2016).
3D gaze cursor: Continuous calibration and end-point
grasp control of robotic actuators. In 2016 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 3295–3300.
Yang, H., Sakhavi, S., Ang, K. K., and Guan, C. (2015).
On the use of convolutional neural networks and aug-
mented CSP features for multi-class motor imagery
of EEG signals classification. In 2015 37th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 2620–
2623.
Zhang L., He W., H. C. and Wang, P. (2010). Improving
mental task classification by adding high frequency
band information. Journal of Medical Systems, 34:51
– 60.
NEUROTECHNIX 2018 - 6th International Congress on Neurotechnology, Electronics and Informatics
32