Gibbons, R. J., Alpert, J. S., Eagle, K. A., Gardner,
T. J., Garson, A., Gregoratos, G., Russell, R. O., Ryan,
T. J., and Smith, S. C. (1999). ACC/AHA guidelines
for ambulatory electrocardiography: Executive sum-
mary and recommendations. Circulation, 100(8):886–
893.
Dong, J.-G. (2016). The role of heart rate variability in
sports physiology. Experimental and Therapeutic Me-
dicine, 11(5):1531–1536.
Drezner, J. A., Ackerman, M. J., Anderson, J., Ashley, E.,
Asplund, C. A., Baggish, A. L., B¨orjesson, M., Can-
non, B. C., Corrado, D. , DiFiori, J. P., Fischbach, P.,
Froelicher, V., Harmon, K. G., Heidbuchel, H., Marek,
J., Owens, D. S., Paul, S., Pelliccia, A., Prutkin, J. M.,
Salerno, J. C., Schmied, C. M., Sharma, S., Stein, R.,
Vetter, V. L., and Wilson, M. G. (2013). Electrocardio-
graphic interpretation in athletes: the ‘seattle criteria’.
British Journal of Sports Medicine, 47(3):122–124.
Dubin, D. (2000). Rapid interpretation of EKG’s: an i nte-
ractive course. Cover Pub. Co, USA, 6th edition.
ESC/AHA (1996). Heart rate variability. Circulation,
93(5):1043–1065.
Fletcher, G. F., Ades, P. A., Kligfield, P., Arena, R., Balady,
G. J., Bittner, V. A ., Coke, L. A., Fleg, J. L., Forman,
D. E., Gerber, T. C., Gulati, M., Madan, K., Rhodes,
J., Thompson, P. D., and Williams, M. A. (2013). Exe-
rcise standards for testing and training. Circulation,
128(8):873–934.
Francis, J. (2016). ECG monitoring leads and special le-
ads. Indian Pacing and Electrophysiology Journal,
16(3):92 – 95.
Guerreiro, J., Lourenc¸o, A., Silva, H., and Fred, A. (2014).
Performance comparison of low-cost hardware plat-
forms targeting physiological computing applications.
Procedia Technology, 17:399 – 406. Conf. on Electro-
nics, Telecom. & Computers (CETC 2013).
Hughes, J. W., Casey, E., Doe, V. H., and Glickman, E. L.
(2010). Depression and heart rate variability in cardiac
rehabilitation patients: Exploring the r oles of physi-
cal activity and fitness. Perceptual and Motor Skills,
111(2):608–624.
Kligfield, P., Gettes, L. S., Bailey, J. J. , Childers, R., Deal,
B. J., Hancock, E. W., van Herpen, G., Kors, J. A.,
Macfarlane, P., Mirvis, D. M., Pahlm, O., Rautaharju,
P., and Wagner, G. S. (2007). Recommendations for
the standardization and interpretation of the electro-
cardiogram. Circulation, 115(10):1306–1324.
Levick, J. (2013). An Introduction to Cardiovascular Phy-
siology. Elsevier Science.
Macfarlane, P. W., Katibi, I. A., Hamde, S. T., Singh, D.,
Clark, E. B., Devine, B., Francq, B. G., Lloyd, S. A.,
and Kumar, V. (2014). Racial differences in the ECG–
selected aspects. Journal of electrocardiology, 47
6:809–814.
Malmivuo, P., Malmivuo, J., and Pl onsey, R. (1995). Bioe-
lectromagnetism: Principles and Applications of Bi-
oelectric and Biomagnetic Fields. Oxford University
Press.
Mu˜noz, J., Gouveia, E., Cameir˜ao, M., and Berm´udez i Ba-
dia, S. (2017). Physiolab - a multivariate physiological
computing toolbox for ECG, EMG and EDA signals:
a case of st udy of cardiorespiratory fitness assessment
in the elderly population. Multimedia Tools and Ap-
plications, pages 11521–11546.
Nˇemcov´a, A. , Marˇs´anov´a, L., Smisek, R., Vitek, M., and
Kol´aˇrov´a, J. (2016). Recommendations for ECG
acquisition using BITalino. In EEICT C onf., pages
543–547.
Pec¸anha, T., de Paula-Ribeiro, M., Nasario-Junior, O., and
de Lima, J. R. P. (2013). Post-exercise heart rate vari-
ability recovery: a time-frequency analysis. Acta Car-
diologica, 68(6):607–613.
Postema, P. G. and Wilde, A. A. (2014). The measure-
ment of the QT interval. Current Cardiology Reviews,
10(3):287–294.
Silva, H., Lourenc¸o, A., Fred, A. L. N ., and Martins,
R. C. M. (2014). BIT: Bi osignal igniter toolkit.
Computer Methods and Programs in Biomedicine,
115(1):20–32.
Silva, H., Lourenc¸o, A., and Paz, N. (2011). Real-time bio-
signal acquisition and telemedicine platform for AAL
based on Android OS. In Int. Living Usability Lab
Workshop on AAL Latest Solutions, Trends and Appli-
cations.
Silva, H. P., Carreiras, C., Lourenc¸o, A., Fr ed, A., Neves,
R. C., and Ferreira, R. (2015). Off-the-person elec-
trocardiography: performance assessment and clinical
correlation. Health and Technology, 4(4):309–318.
Taelman, J., Vandeput, S., Spaepen, A., and Van Huffel, S.
(2009). Influence of mental stress on heart rate and
heart rate variability. In Vander Sloten, J., Verdonck,
P., Nyssen, M., and Haueisen, J., editors, 4th Euro-
pean Conf. Int. Federation for Medical and Biological
Eng., pages 1366–1369.
Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-
aho, P. O., and K arjalainen, P. A. (2014). Kubios HRV
– heart rate variability analysis software. Computer
Methods and Programs in Biomedicine, 113(1):210 –
220.
Tong, W., Kan, C., and Yang, H. (2018). Sensitivity analysis
of wearable textiles for E CG sensing. In Proc. Int.
Conf. I EEE EMBS on Biomedical Health Informatics
(BHI), pages 157–160.
Trimmel, K., Sacha, J., and Huikuri, H. (2015). Heart Rate
Variability: Clinical Applications and Interaction bet-
ween HRV and Heart Rate. Frontiers Research Topics.
Frontiers Media SA.
von R osenberg, W., Chanwimalueang, T., Adjei, T., Jaffer,
U., Goverdovsky, V., and Mandic, D. P. (2017). Re-
solving ambiguities in the LF/HF ratio: LF-H F scat-
ter plots for the categorization of mental and physical
stress from HRV. Frontiers in Physiology, 8:360.
Zhu, Z., Liu, T., Li, G., Li, T., and Inoue, Y. (2015). Weara-
ble sensor systems for infants. Sensors, 15(2):3721–
3749.