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Abstract: Many Wireless sensor networks(WSNs) applications are dependent on clock synchronization technology. 
The problem of loss of observations for clock synchronization based on Kalman filter estimation is discussed. 
Firstly, the clock synchronization model of incomplete observation is obtained from the sensor clock reading 
model. Then, according to the intermittent measurements, Kalman filter formula is deduced and the 
estimating error covariance recurrence equation is obtained. Considering that the observation loss is random, 
the statistical convergence of the error covariance is emphatically analyzed. Finally, we show the existence of 
the critical packet arrival rate, and prove that when the actual packet arrival rate is higher than the critical 
value, the mean estimation error covariance transitions from unbounded to bounded. Otherwise, we also give 
the bounds of the covariance of the steady-state error and the boundary of the critical packet arrival rate. 
Simulation results show the critical packet arrival rate determines the average error covariance transition from 
unbounded to bounded. 

1 INTRODUCTION 

Wireless sensor networks(WSNs) facilitate its 
deployment, low cost and high adaptability to the 
environment which have been widely used in 
medical health monitoring, smart home, and 
environmental monitoring(Akyildiz, 2002). These 
applications require a large number of synchronized 
nodes through the coordination of the 
implementation of a distributed task, so the sensor 
nodes have a unified time frame which is very 
important. However, different sensor nodes are 
affected by factors such as hardware timing device, 
ambient temperature and other factors. As time goes 
on, the clocks between nodes will have different 
deviations. Clock synchronization algorithms (Wu Y 
C,2011 and Tao, 2012 and Wakabayashi, 2013) are 
the key technology to achieve the sensor network 
which has the same time, its core is the estimation of 
clock parameters, Kalman filter algorithm is used to 
estimate the clock parameters. In the wireless sensor 
network clock synchronization technology, this paper 
uses two-way information exchange mechanism to 
obtain the observations sent by neighbor nodes. Due 
to the unreliability of the wireless network, the 
synchronization node will randomly lose the key 

observation, then, the stability of the Kalman filter 
will be greatly affected. This paper is very interested 
in the loss of observations of the Kalman filter 
estimation process. 

The author have built the state transition equation 
with relative clock offset and fixed time delay in 
(Wang, 2014), and have analyzed the presence of 
Kalman filtering estimation packet loss, they believe 
that when the measured value misses, the Kalman 
filter is not updated, then the sampling period is 
random and the discussion based on random 
sampling convergence properties in (Micheli, 2001) 
and (Micheli and Jordan, 2002). With the (Wang, 
2015), the Kalman filter update step and the error 
covariance iteration are random and all depend on the 
random arrival of the measured values. The authors 
build the Markov model with packet loss and 
establish the sufficient and necessary conditions for 
the stability based on the peak covariance stability 
theory in (Alexiadis, 1999). The authors of research 
(Moayedi, 2010) studied adaptive Kalman filtering, 
and took the mixed uncertainty of measured-value 
latency and packet loss into account. It is a novel 
research field to study the effect of loss of 
measurement on clock synchronization stability. In 
this paper, focus on any pair of sensor nodes which 
can be used in sensor networks, and establish the 
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clock synchronization model of incomplete 
observation. The error covariance iterative equation 
of the prior form is obtained by re-deriving the 
Kalman filter process based on the loss of observed 
valued. Since the random measurement is missing, 
the error covariance iteration is a random process, so 
this paper studies the statistical properties of the 
estimation error covariance. 

2 PROBLEM FORMULATION 

We consider two sensor node { },i jS S , which can 
communicate with each other in the sensor network. 
Because of the crystal oscillator and the sensor itself 
is different, so each sensor node has one analogy 
clock. The discrete clock reading model is follow as: 

[ ]0 0( ) ( 1) ( ) 1i i ic k k k kτ ϑ β τ= + − + −  (1) 
Where 0τ is sampling period, ( )i kϑ and ( )i kβ  

denote the accumulated clock offset and 
instantaneous clock skew of the node iS at the k

sampling, respectively. 
In order to achieve sensor node clock 

synchronization, we assume that the clock reading of 
node jS is accurate, and the node iS is the node to be 
synchronized at any time, Then the goal of clock 
synchronization is to correct the clock read ( )ic k of 
node iS as node jS clock reading. According to the 
discrete clock reading model, the primary task of 
clock synchronization is to track the clock skew and 
the accumulated clock offset. 

We choose ( ) [ ( ) ( )]T
i i ix k k kβ ϑ= as the state variable, 

can be used to obtain the iS clock parameter evolution 
model:  

( ) ( 1) ( )i i ix k Ax k w k= − +  (2) 

Where the state transition matrix
0

0
1

a
A

aτ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  

process noise is ( )iw k , and satisfies [ ( )] 0iE w k = ,
2

2[ ( ) ( )] IT
i iE w k w k σ= . 
In order to establish the relationship between 

adjacent nodes, the timestamp exchange process can 
be modeled as: 

{ , } { , } { , }
2 1( ) ( )i j i j i j

j i ij kT t T t d Xϑ ϑ− = − + +  (3) 
{ , } { , } { , }

3 4( ) ( )i j i j i j
j i ij kT t T t d Yϑ ϑ− = − − −  (4) 

Where ijd is the fixed time-delay part when the 
node iS and the node jS are performing bidirectional 
information exchange, and { , }i j

kX  and { , }i j
kY denote the 

variable delay part. Variable delay involves a large 
number of independent stochastic processes, so 

suppose { , }i j
kX  and { , }i j

kY  are independent identically 
distributed Gaussian random variables with mean 0  
and variance 2σ . 

The actual wireless sensor network has a series of 
unreliable factors, often resulting in the time stamp in 
the transmission process of delay or loss. The binary 
variable γk is introduced to indicate whether the 
observed value at time k reaches the destination node, 
γ 1k = indicates that the observed value reaches the 
destination node successfully, and γ 0k =  indicates 
that the observed value is lost, and the observed 
packet loss at different time is independent of each 
other. 

Simultaneous expressions (3) and (4), the 
intermittent observation model is expressed as: 

, γ ( ( ) ( ))i k k i iy Cx k v k= +  (5) 
Where { , } { , }

, ,
i j i j

k r k s ky T T= − , [ ]0 2C = − , ( )iv k is 
Gaussian white noise with mean zero and covariance
R . 

3 STATISTICAL PROPERTIES OF 
ITERATIVE OF ERROR 
COVARIANCE 

In WSNs, there will inevitably be a loss of 
observations, and seriously affect the stability of the 
estimation based on Kalman filter. In this paper, we 
focus on the influence of missing values on the 
estimation stability based on Kalman filter, and then 
get the influence of missing values on the clock 
synchronization stability. 

According to the intermittent observation model, 
the covariance of the output noise is defined as: 

2

(0,R), 1
(0, I), 0

k
t k

k

N
P

N
=⎧

⎨ =⎩
（ | ）=

γ
ν γ

σ γ
        （6） 

When the observed value is lost, the destination 
node is equivalent to receiving a noise with a 
variance of infinity. Next, we re-derive the Kalman 
filtering process based on the loss of observed values, 
the kalman filter is as follows: 

Prediction step:  
1| |k k k kx Ax+ =) )              （7） 

1| |
T

k k k kP AP A Q+ = +           （8） 
When the observations are lost, the σ in the 

Kalman gain tends to infinity, then 2 1( ) 0Iσ − → , the 
update step becomes: 

1| 1 1| 1 1 1 1|( )k k k k k k k k kx x K y Cxγ+ + + + + + += + −) ) )  (9) 
1| 1 1| 1 1 1|k k k k k k k kP P K CPγ+ + + + + += −  (10) 

The Kalman gain is 1
1 1| 1|( )T T

k k k k kK P C CP C R −
+ + += + . 
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Substituting (10) into (7) and for simplicity, let  
1 1|k k kP P+ += , then we can get the iterative formula of kP :  

1
1 ( )T T T T

k k k k k kP AP A Q AP C CP C R CP Aγ −
+ = + − +  (11) 

For any initial value 0P , the error covariance 
sequence 0{ }k kγ ∞

= is also random, since the observed 
arrival sequence { } 0k k

P ∞

= is random. Therefore, this 
paper studies the statistical properties of error 
covariance, focusing on the convergence of 1[ ]kE P+ . 

1[ | ]k kE P P+  is modelled as a modified Riccati 
differential equation (MARE): 

1( ) ( )T T T Tg X AXA Q AXC CXC R CXAλ λ −= + − +  (12) 
Where Pr[ 1]kλ γ= = is the statistical probability of 

arrival of the observed value. 
Since 1 1[ ] [ [ | ]] [ ( )]k k k kE P E E P P E g Pλ+ += = , the statistical 

convergence of 1[ ]kE P+ is obtained by analysing the 
convergence of [ ( )]kE g Pλ . 

4 STABILITY ANALYSIS 

The estimated stability directly reflects the stability 
of the clock synchronization. If the clock parameters 
are estimated inaccurately, the logical clock of the 
sensor nodes will not be synchronized, and a series of 
tasks that rely on clock synchronization will not be 
completed. So this section of the clock parameter 
estimation for the stability analysis of the target is to 
ensure process stability under the premise of Kalman 
filter, calculate the minimum value of the arrival rate 
of observation that is, the critical observations of 
arrival rate, also calculate the convergence range of 
error covariance matrix. 

In order to facilitate the proof of the theorem, we 
give an auxiliary function:  

( , ) (1 )( ) ( )T TK X AXA Q FXF Vλ λΦ = − + + +  (13) 
Where F A KC= + ， TV Q KRK= + ， 0n nX ×= ≥ ，

0R ≥ and 0Q ≥ 。 
In this section, theorem 1 is given to prove the 

convergence of MARE, that is, the Riccati 
differential equation is bounded in the steady state, 
and then we prove that the steady-state mean error 
covariance matrix 1[ | ]k kE P P+ is bounded. 

Theorem 1: According to the auxiliary function
( , )K XΦ , suppose there exists a matrix K̂ and a 

positive definite matrix P̂ , and satisfy ˆ 0P >  and 
ˆ ˆ ˆ( , )P K P> Φ , then: 

A. For any initial value 0 0P ≥ , MARE converges,  
and the convergence value is independent of the  
initial value, that is 0lim lim ( )t

tt t
P g P Pλ→∞ →∞

= = . 

B. P is the only positive definite solution of 
MARE. 

Theorem 2 gives the conditions for the existence 
of the critical arrival rate cλ . When k cλ λ> , for all 
initial conditions, the mean state covariance [ ]kE P is 
bounded; when k cλ λ≤ , for any initial condition, the 
mean state covariance divergence. 

Theorem 2: if ( )1/2,A Q  is controllable, ( ),A C  
can be observed, then there is [0,1]cλ ∈ , satisfying: 

[ ]lim tt
E P

→∞
= +∞ ,  for 0 cλ λ≤ ≤ and 0 0P∃ ≥ ; 

[ ]
0

lim t Pt
E P M

→∞
≤ ,  for 1cλ λ≤ ≤ and 0 0P∀ ≥ ; 

Where
0

0PM ≥ , dependent on initial conditions

0 0P ≥ . 
Theorem 3 gives the expression of the lower 

bound and upper bound of the arrival rate cλ of 
critical observations. 

Theorem 3: If the critical observation arrival rate
cλ exists, then: 

2

1argin | (1 ) 1f S S ASA Q
a

⎡ ⎤= ∃ = − + = −⎣ ⎦
) ) )

λλ λ  (14) 

argin ( , ) | ( , )f K X X K Xλλ ⎡ ⎤= ∃ > Φ⎣ ⎦
) ) ) ) )

 (15) 
Where max | |i ia σ=  and iσ  is the eigenvalue of 

matrix A , namely cλ λ λ≤ ≤ . 
The calculation of the upper bound of the critical 

measurement value is equivalent to an iterative 
process of LMI feasibility problem. The feasibility of  
LMI is shown as follows. 

If ( )1/2,A Q  is controllable, ( ),A C  is observable, 
assuming that K  and 0X >  are present and that 

( , )X K X> Φ  is satisfied. Let F A KC= + , then:  
(1 ) T T TX AXA FXF Q KRKλ λ λ> − + + + ， 

Using the Shure complement decomposition, we 

get: 
( ) 1

( , ) ( ) 0 0

1 0

T T T

T

Y YA ZC YA

Y Z A Y C Z Y

A Y Y
λ

λ λ
λ

λ

⎡ ⎤+ −
⎢ ⎥

Ψ = + >⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

 
Since ( , ) ( , )aY aK a Y KΨ = Ψ , must be bound Y I≤ . 
In summary, the upper bound of the critical 

measurement arrival rate λ  is the solution of the 
following optimal problem:  

arg min ( , ) 0 0Y Z Y Iλ
λ

λ = Ψ > ≤ ≤  (16) 

For an ideal communication network, if ( ),A Q  is 
stable and ( ),A C  is observable, kP  will converge to 
a certain value. However, for lossy communication 
networks, there will be no uniquely determined error 
covariance matrix at Kalman filter steady state, and 
only the boundary of the mean estimation error 
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covariance [ ]tE P  can be calculated. Theorem 4 gives 
the expression of the lower bound and upper bound of 
the mean error covariance [ ]kE P  at steady state. 

Theorem 4: Suppose that 1/2( , )A Q  is controllable 
, ( , )A C is observable, and λ λ>  is satisfied. Then, 
for 0[ ] 0E P ≥ , there exists 0 lim [ ] limk k kk k

S S E P V V
→∞ →∞

< = ≤ ≤ = . 

Where S is the solution of the equation
(1 ) TS ASA Qλ= − + , V is the solution of the equation 

( )V g Vλ= . 
The lower bound of average error covariance 

equation is S , it is easy to think of the use of 
standard Lyapunov equation. For the upper bound of 
the mean error covariance, V  is obtained by solving 
the equivalent semidefinite programming problem. 

Assuming λ λ> , the solution of matrix ( )V g Vλ=  
is obtained by the following optimal problem:  

arg max ( )

. . 0

v

T T

T T

Trace V

AVA V AVC
s t

CVA CVC R

λ
λ

⎧
⎪⎪

⎡ ⎤⎨ −
≥⎢ ⎥⎪

+⎢ ⎥⎪ ⎣ ⎦⎩

 

Where 0
T T

T T

AVA V AVC

CVA CVC R

λ
λ

⎡ ⎤−
≥⎢ ⎥

+⎢ ⎥⎣ ⎦
 is derived from 

the decomposition of ( )V g Vλ≤  using Shure. 

5 NUMERICAL SIMULATION 

The wireless sensor network clock synchronization 

model is denoted as ( , , , )A C Q R , where 1.25 0
1 1

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,

[ ]0 2C = − , 2.5R = , 2 2100 IQ ×=  . Since the observation 

matrix C is irreversible, then there is no K̂ , so that the 
ˆF A KC= +  is equal to the zero matrix. In this case, 

the critical measurement arrival rate can’t be 
calculated exactly, so only the lower and upper 
bounds can be calculated. The green and purple solid 
line in Figure 1 represents the lower and upper bound 
of the critical measurement arrival rates, respectively. 
By theorem 2, the lower bound of the critical arrival 
rate is 0.36λ = . In this paper, when the observed 
arrival rate is 0, the error covariance infinity, it is 
clear that, with the actual observation of the arrival 
rate gradually increased, when equal to 0.36, the 
average error covariance lower bound sharp decline, 
approximately converges at 0.6λ = . Similarly, the 
upper bound of the mean error covariance begins to 
decrease at λ λ= , and eventually converges. 

 
Figure.1. Upper and lower bounds transition from 
unbounded to bounded 

 

Figure.2. Monte Carlo test 

The Monte Carlo simulation is used to simulate 
the real clock synchronization process. The inverted  
triangle curve in Figure. 2 represents the 
synchronization error covariance [ ]kE P , which is 
obtained from 1000 Monte Carlo experiments. The 
star of red curve and the black positive triangle curve 
represents the lower bound and upper bound of the 
steady-state error covariance, respectively, calculated 
by the modified Riccati differential equation. In this 
paper, when the actual arrival rate is 0, lim [ ]kk

E P
→∞

 is 
equal to infinity. It is obvious that the 
synchronization error covariance based on Kalman 
filter is a monotonically decreasing function of the 
arrival rate. Note that when 0.36λ = , the 
synchronization error covariance into the lower and 
upper bound including area, when the measured 
arrival rate is larger than the critical value, the 
synchronization error covariance convergence, and 
its convergence range in the lower and upper bound, 
to prove the correctness of the theory. 

The article propose a static state estimator for 
linear systems: 

1 1γ ( )s s
t t t s t tx Ax K y y+ += + −) ) )  (17) 

Where, sK  represents the static gain constant. 
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Figure.3. Comparison of dynamic and static gain 
performance 

Three static gain methods are proposed in the 
reference (Sinopoli, 2004), and the Kalman filter 
gain in this paper belongs to the dynamic gain. By 
comparing the performance of these three kinds of 
static gain, it is shown that the Kalman filter is still 
the best when the measurement value is lost. Figure 3 
compares the performance between the dynamic 
Kalman filter gain and three kinds of static gain, the 
star of red curve represents the average error 
covariance of dynamic gain, with the actual 
observation arrival rate increases, the most close to 
the upper bound of convergence theory analysis. It is 
shown that the steady-state error covariance is 
minimum and the estimation algorithm is optimal. 

6 CONCLUSIONS 

This paper prove that there exists the critical arrival 
rate of the measured value, and the average error 
covariance changes from unboundedness to 
boundedness with the arrival rate of the actual 
measured value increasing and exceeding the critical 
arrival rate. A numerical algorithm is proposed to 
calculate the upper and lower bound of the critical 
arrival rate and the boundary of the steady-state mean 
error covariance. The simulation results show that the 
average error covariance divergence and the clock 
parameter estimation are unstable when the actual 
measured value arrival rate is less than the      
critical value. This theory can also guide the resource 
allocation of wireless sensor networks. If the current 
synchronization accuracy does not meet the 
requirements, we can get better synchronization 
accuracy by improving the communication resources. 
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