6 CONCLUSIONS
A chaotic initialized particle swarm optimization
(CIPSO) algorithm was applied to parameter
estimation of a DC motor. The DC motor was
modelled using transfer function. Five parameters of
the DC motor namely moment of inertia, viscous
friction, electromotive force constant, resistance and
inductance were estimated optimally using the
CIPSO. The initial population swarm was generated
by using a chaotic tent map. The estimated parameters
were compared with the actual parameters and the
parameters estimated by the standard PSO. The
CIPSO was accurate in estimating the parameters
with less mean square error, comparatively.
REFERENCES
Bosco, M.C., Guedes, J.J., Castoldi, M.F., Goedtel, A.,
Ravazzi, E., Francisco, L. & Buzachero, S. 2017,
'Estimation of Parameters and Tuning of a Speed PI
of Permanent Magnet DC Motor Using Differential
Evolution', Electric Machines and Drives
Conference (IEMDC).
Cirrincione, M., Pucci, M., Cirrincione, G. & Capolino,
G.A. 2003, 'A new experimental application of least-
squares techniques for the estimation of the
induction motor parameters', IEEE Transactions on
Industry Applications, vol. 39, no. 5, pp. 1247–56.
DC Motor Speed: System Modeling n.d., viewed 1
December 2017,
<http://ctms.engin.umich.edu/CTMS/index.php?exa
mple=MotorSpeed§ion=SystemModeling>.
Dub, M. & Jalovecký, R. 2010, 'DC motor experimental
parameter identification using the Nelder-Mead
simplex method', Proceedings of EPE-PEMC 2010 -
14th International Power Electronics and Motion
Control Conference, pp. 9–11.
Hadef, M. & Mekideche, M.R. 2009, 'Inverse problem
methodology for parameter identification of a
separately excited DC motor', Journal of Electrical
Engineering and Technology, vol. 4, no. 3, pp. 365–
9.
Kumpanya, D., Thaiparnat, S. & Puangdownreong, D.
2015, 'Parameter Identification of BLDC Motor
Model Via Metaheuristic Optimization Techniques',
Procedia Manufacturing, vol. 4, no. Iess, pp. 322–7.
Mohammadi, H.R., Akhavan, A., Mohammadi, H.R. &
Akhavan, A. 2014, 'Parameter Estimation of Three-
Phase Induction Motor Using Hybrid of Genetic
Algorithm and Particle Swarm Optimization',
Journal of Engineering, vol. 2014, pp. 1–6.
Mughal, M.A., Ma, Q. & Xiao, C. 2017, 'Photovoltaic cell
parameter estimation using hybrid particle swarm
optimization and simulated annealing', Energies,
vol. 10, no. 8, pp. 1–14.
Petrovas, A., Pitrenas, A. & Savickiene, Z. 2017, 'DC motor
parameter identification using equation error
method', Electrical Engineering, no. 1, pp. 1–9.
Puangdownreong, D. 2017, Application of Flower
Pollination Algorithm to Parameter Identification of
DC Motor Model, no. March, pp. 8–10.
Tian, D. 2017, 'Particle Swarm Optimization with Chaos-
based Initialization for Numerical Optimization
Particle Swarm Optimization with Chaos-based
Initialization for Numerical', Intelligent Automation
& Soft Computing, vol. 8587, no. March, pp. 1–12.
Udomsuk, S., Areerak, K.-L., Areerak, K.-N. & Srikaew,
A. 2010, 'Parameters identification of separately
excited DC motor using adaptive tabu search
technique', 2010 International Conference on
Advances in Energy Engineering, no. 2, pp. 48–51.
Zhang, Y., Wang, S., Ji, G., Zhang, Y., Wang, S. & Ji, G.
2015, 'A Comprehensive Survey on Particle Swarm
Optimization Algorithm and Its Applications',
Mathematical Problems in Engineering, vol. 2015,
pp. 1–38.