4 RESULTS AND DISCUSSIONS
4.1 HI Correction
Espitalie et al. (1977) firstly proposed a rock
pyrolysis method for obtaining S1 and S2 which
respectively denote the amount of free or adsorbed
hydrocarbons in source rocks and the amount of
hydrocarbons generated from kerogen pyrolysis so
as to reflect the hydrocarbon generation capacity of
mature source rocks (Espitalie et al., 1980). S1 is
corresponding with the hydrocarbons volatilized
during heating to ≤300℃ in a Rock-Eval experiment,
and they are basically C7-33 hydrocarbons; S2 is
corresponding with the hydrocarbon yields from
pyrolysis during heating to >300℃ in the Rock-Eval
experiment. Delvaux et al. (1990) made some
modifications on the definition and normalized the
experiment results of the amount S1 of free or
adsorbed hydrocarbons and the amount S2 of
hydrocarbons generated from kerogen pyrolysis
(Delvaux et al., 1990). Dan Jarvie (1987), Lafargue E.
et al. (1998), Behar F. et al. (2001)
(Dan, 1984;
Lafargu et al., 1998; Behar et al., 2001) believed that
S2 was hydrocarbons released during the pyrolysis
of kerogen between 300 and 550 or 600 degrees C
with a linear temperature gradient usually between
25 and 30 degrees C per minute. Wang Anqiao et al.
(1987) found that the value of S2 after chloroform
extraction was less than that before chloroform
extraction through the comparison of a direct
pyrolysis experiment on a source rock sample with a
pyrolysis experiment on it after chloroform
extraction (Wang and Zheng, 1987). This indicates
that there are some liquid hydrocarbons in S2; due to
the adsorption and swelling action of organic
matters and too high boiling point of part liquid
hydrocarbons (boiling point of n-C18 302℃), these
liquid hydrocarbons cannot be evaporated out
at<300℃ in a Rock-Eval experiment. Delvaux et al.
(1990) also obtained the same conclusion from their
studies. According to the conclusion, part
macromolecular substances belonging to free
hydrocarbons S1 such as asphaltene and colloid in
crude oil have similar pyrolysis hydrocarbon
temperature during heating in a conventional sample
pyrolysis experiment, so that the experiment value
of free hydrocarbons S1 is relatively low while that
of pyrolysis hydrocarbons S2 is relatively high. The
determination of S2 is complicated by the retention
of some of the generated hydrocarbons by the rock
matrix, and thus HI (hydrogen index=S2/TOC×100)
will not give the true ratio of pyrolyzable
hydrocarbons to organic carbon unless appropriate
correction is made (Langford et al., 1990). The best
treatment method is to resample and conduct a post-
extraction pyrolysis experiment, but this will waste a
lot of original pyrolysis data. In this paper, the
regularity of all analytical data has been discussed
on the basis of the analysis of core pyrolysis
experiment data on two wells, and relevant formulas
have been fitted to correct HI.
The comparative experiments on the full cores of
two wells before and after extraction show a large
difference, the S2 difference (△S2) is 0.75~3.52mg
HC/g Rock and the HI difference (△HI) is
20.54~82.97mg HC/g TOC. △S2, △S2/S2 and △HI
show power decrease with Ro with correlation
coefficient of 0.9, 0.9 and 0.93 respectively (Figure
2a~2c), i.e. the larger Ro is, the smaller △S2,
△S2/S2 and △HI are. △HI increases exponentially
with HI
unextracted
(Figure 2d) with a correlation
coefficient of 0.98, the larger HI
unextracted
is, the
larger △HI is. According to the above-mentioned
correlations, it is feasible that HI can be corrected by
fitting relation.
Based on the formula HI=S2/TOC×100(mg
HC/g TOC) and the above analysis, multiple
methods can be used to correct HI.
4.1.1 To Calculate HI by Correcting S2
According to the above analysis, S2=S
unextraced
-△S2,
where △S2 can be calculated from the regression
formula of △S2 with Ro, i.e. Ro = 1.4844×△S2
0.248
.
In addition, S2 can also be calculated from
△S2/S2. Let △S2/S2=K
S2recovery coefficient
, and then
S2=S2
unextracted
- KS
2recovery
coefficient
×S2
unextracted
=S2
unextracted
×(1-K
S2recovery coefficient
),
where K
S2recovery coefficient
can be calculated according
to the regression formula of Ro with △S2/S2, i.e.
Ro= 0.9632×K
S2recovery coefficient
0.413
. Substitute the
corrected S2 into the HI calculation formula to
calculate HI.
4.1.2 Direct HI Correction
Calculate △HI according to the regression formula
of △HI with HI, i.e. △HI=4.05× HI
unextracted
0.304
,
HI
correction
=HI
unextracted
-△HI.