[4] Spielmannova A, Machova A and Hora P 2007 Crack orientation versus ductile-brittle behaviour in
3D atomistic simulations Mater Sci Forum 567-568 61
[5] Khantha M, Pope D P and Vitek V 1994 Dislocation screening and the brittle-to-ductile transition:
a Kosterlitz-Thouless type instability Phys. Rev. Lett 73 684-7
[6] Ohr S M 1985 An electron microscope study of crack tip deformation and its impact on the
dislocation theory of fracture Mater. Sci. Eng. 72 1
[7] Vehoff H and Neumann P 1979 In situ SEM experiments concerning the mechanism of ductile
crack growth Acta Metall 27 915
[8] Guo Y F, Wang Y S and Zhao D L 2007 Atomistic simulation of stress-induced phase
transformation and recrystallization at the crack tip in bcc iron Acta Metall 55 401-407
[9] Guo Y F and Zhao D L 2007 Atomistic simulation of structure evolution at a crack tip in bcc-iron
Materi Sci Eng A 448 281-186
[10] Uhnakova A, Machova A and Hora P 2009 Crack-induced stress, dislocations and acoustic
emission by 3-D atomistic simulation in bcc iron Acta Metall 57 4065-4073
[11] Uhnakova A, Machova A and Hora P 2010 Transonic twins in 3D bcc iron crystal Comput. Mater.
Sci 48 296-302.
[12] BitzeK E and Gumbsch P 2013 Mechanisms of dislocation multiplication at crack tips Acta Metall
61 1394-1403
[13] Deshpande V S, Needleman A and Van der Giessen E 2002 Discrete dislocation modeling of
fatigue crack propagation Acta Mater 50 51
[14] Potirniche G P, Horstemeyer M F, Jelinek B and et al 2005 Fatigue damage in nickel and copper
single crystals at nanoscale Int. J. Fatigue 27 1179-1185
[15] Potirniche G P, Horstemeyer M F, Gullett P M and et al 2006 Proceedings Roral Society A 462
3707-3731
[16] Farkas D, Willemann M, Hyde B 2005 Atomistic mechanisms of fatigue in nanocrystalline metals
Phys. Rev. Lett 94 165502
[17] Potirniche G P and Horstemeyer M F 2006 On the growth of nanoscale fatigue cracks Philos. Mag.
Lett 86 (3) 185-193
[18] Nishimura K and Miyazaki N 2004 Molecular dynamics simulation of crack growth under cyclic
loading Comput. Mater. Sci 31 269-278
[19] T Tang, S Kim and M F Horstemeyer 2010 Fatigue crack growth in magnesium single crystals
under cyclic loading: Molecular dynamics simulation Comput. Mater. Sci 48 42439
[20] Uhnakova A, Machova A and Hora P 2011 3D atomistic simulation of fatigue behaviour of a
ductile crack in bcc iron Int. J. Fatigue 33 1182-1188
[21] Prahl J, MachováA, SpielmannováA and et al 2010 Engineering Fracture Mechanics 77 184-192
[22] Machova A, Pokluda J, Uhnakova A and Hora P, 2014 3D atomistic studies of fatigue behaviour of
edge crack (001) in bcc iron loaded in modeⅠandⅡ Int. J. Fatigue 66 11-19
[23] Luo W H, Hu W Y, and Xiao S F 2008 Size Effect on the Thermodynamic Properties of Sliver
Nanoparticles J. Phys. Chem. C 112 2359-2369
[24] Luo W H, Hu W Y, and Xiao S F 2008 Melting temperature of Pb nanostructural materials from
free energy calculation J. Chem. Phys. 128 074710
[25] Xiao S F, Hu W Y, and Yang J Y, 2006 Melting temperature: From nanocrystalline to amorphous
phase J. Chem. Phys 125 184504
[26] Xiao S F and Hu W Y 2006 Comparative study of microstructural evolution during melting and
crystallization J. Chem. Phys. 125 014503
[27] Wang K, Xiao S F, Deng H Q, Zhu W J, Hu W Y 2014 An atomic study on the shock-induced
plasticity and phase transition for iron-based single crystals Int. J. Plasticity 59 180-198
[28] J Dana Honeycutt and Hans C, Andersen 1987 Molecular Dynamics Study of Melting and Freezing
of Small Lennard-Jones Clusters J. Phys. Chem 91 4950-4963
[29] Plimpton S 1995 Fast Parallel Algorithms for Short-Range Molecular Dynamics J Comp Phys 117
() 1-19
[30] Ma L, Xiao S F, Deng H Q and Hu W Y 2014 Molecular dynamics simulation of fatigue crack
Effect of Orientation and Temperature on Edge Crack Propagation of Bcc Iron under Cyclic Loading
29