occurring. It indicated that the fatigue cracks can be
more accurately predicted in the path of thermal
fatigue crack propagation and the position of crack
occurring.Therefore, it will provide guidance for the
prevention of die casting mold’s failure in the actual
production.
5 CONCLUSION
The thermal fatigue experiment indicated that with
the increase of the thermal fatigue cycles, after the
thermal fatigue crack has initiated, the rate of the
primitively crack propagation is very high, and then
the speed decreases gradually and tends to be stable
at last.
The finite element simulation results indicated
that the thermal fatigue crack easily appears at the
area of maximum concentration of thermal stress
and also easily to be produced at the position with
larger difference of temperature. Besides, at the tip
of the thermal fatigue crack, it is easier to expand at
the position of the largest mises equivalent stress
and strain.
Compared with the results of the experiment and
the simulation, it can be found that the results of the
experiment is in accord with the ones of numerical
simulation analysis in the path of thermal fatigue
crack propagation and the position of crack
occurring. Therefore, it will provide guidance for the
prevention of die casting mold’s failure in the actual
production.
REFERENCES
1. Wang RB. Research on failure analysis and selection
andstrengthen treatment of die-casting die of the
aluminum alloy [J]. Die Mold Manufacturing, 2008.
2. Leo B. Prediction of life to thermal fatigue crack
initiation of die casting dies[J].International
Conference on Tooling, 1999, 5:225-234.
3. Chemvavsk A. Method of analysis of development of
a network of thermal cracks[J]. Strength of Materials,
1990, 22:404-412.
4. Zhu RC, Li YD, Wang CY, et al Thermal fatigue
analysis of aluminum alloy die casting mold[J].
Special Casting Nonferrous Alloys, 2010, 30:224-226.
5. Fu MW, Lu J,Chan WL. Die fatigue life improve-ment
through the rational design of metal-forming
system.Journal of Materials Processing Technology,
2009, 209:1074-1084.
6. Tian GH. Analysis of the factors affecting thedie-
casting die life[J]. Die Mould Industry, 2005, 1:54-
58.
7. Fu M W, Yong M S, Muramatsu T. Die fatigue
lifedesign and assessment via CAE simulation[J].
International Journal of Advanced Manufacturing
Technology, 2008, 35(9-10):843-851.
8. Zhang H, Lu Z. Thermal deformation of die casting
die and its counter-measures[J]. Special Casting &
Nonferrous Alloys, 2006, 26:229-230.
9. Srivastava A, Joshi V, Shivpuri R. Computer
modeling and prediction of thermal fatigue cracking in
die-casting tooling[J]. Wear, 2004, 256(1):38-43.
10. Damjan Klobčar, Janez Tušek. Thermal stresses in
aluminium alloy die casting dies[J]. Computational
Materials Science, 2008, 43(4):1147-1154.
11. Long A, Thornhill D, Armstrong C, et al. Predicting
die life from die temperature for high pressure dies
casting aluminium alloy[J]. Applied Thermal
Engineering, 2012, 44(2):100-107.
12. Ming Y, Sun Z L, Qiang Y, et al. FEM Simulation of
Initial Cracking Process Due to Thermal Fatigue[J].
Journal of Northeastern University, 2007,
28(12):1741-1744..
13. Paffumi E, Nilsson K F, Taylor N G. Simulation of
thermal fatigue damage in a 316L model pipe
component[J]. International Journal of Pressure
Vessels & Piping, 2008, 85(11):798-813.
14. Fajdiga G, Sraml M. Fatigue crack initiation and
propagation under cyclic contact loading[J].
Engineering Fracture Mechanics, 2009, 76(9):1320-
1335.
15. Remes H, Varsta P, Romanoff J. Continuum approach
to fatigue crack initiation and propagation in welded
steel joints[J]. International Journal of Fatigue, 2012,
40(40):16-26.
16.
Shang D G, Yao W X, Wang D J. A new approach to
the determination of fatigue crack initiation size[J].
International Journal of Fatigue, 1998, 20(9):683-687.