Table 4: Result of Classification 80% data training and 20%
testing data.
5 CONCLUSIONS
From the results above, it can be concluded that
kernel polynomial is the best kernel for data DR,
because it states 90.91% accuracy from the process of
each image in classification. The results of research
concluded that the data used DR is the type of data
polynomial due to the match with the polynomial
kernel.
REFERENCES
Ahuja, Y., & Yadav, S. K., 2012. Multiclass Classification
and Support Vector Machine. Global Journal of
Computer Science and Technology Interdisciplinary,
12(11), 15–19. Retrieved from https://globaljournals.
org/GJCST_Volume12/2-Multiclass-Classification-
and.pdf, accessed on November 1, 2018).
Anthony, G., Greg, H., & Tshilidzi, M., 2007).
Classification of images using Support Vector
Machines. Retrieved from https://arxiv.org/ftp/arxiv/
papers/0709/0709.3967.pdf, accessed on November 1,
2018.
Aravind, C., PonniBala, M., & Vijayachitra, S., 2013.
Automatic Detection of Microaneurysms and
Classification of Diabetic Retinopathy Images using
SVM Technique. International Journal of Computer
Applications (0975-8889). International Conference on
Innovations in Intelligent Instrumentation, Optimization
and Signal Processing (ICIIIOSP), 18–22.
Cunha-Vaz, J., & Bernardes, R., 2005. Nonproliferative
retinopathy in diabetes type 2. Initial stages and
characterization of phenotypes. Progress in Retinal and
Eye Research 24, 355–377. https://doi.org/10.1016/j.
preteyeres.2004.07.004.
Gori, N., Kadakia, H., Kashid, V., & Hatode, P., 2017.
Detection and Analysis of Microanuerysm in Diabetic
Retinopathy using Fundus Image Processing.
International Journal of Advance Research, Ideas and
Innovations in Technology (IJARIIT), 3(2), 907–911.
Gupta, V., Gupta, A., Dogra, M. R., Singh, R., 2013.
Diabetic Retinopathy Atlas 1
st
Edition. New York: MC
Graw Hill Medical.
Hashim, M. F. & Hashim, S. Z. M., 2014. Diabetic
retinopathy lesion detection using region-based
approach. 2014 8th Malaysian Software Engineering
Conference, MySEC, 306–310. https://doi.org/10.1109/
MySec.2014.6986034.
Herrera, L. J., Rojas, I., Pomares, H., Guillén, A.,
Valenzuela, O., & Banos, O., 2013. Classification of
MRI Images for Alzheimer’s Disease Detection. 2013
International Conference on Social Computing, 846–
851. https://doi.org/10.1109/SocialCom.2013.127
Hsu, W., Lee, M. L., Pallawala P. M. and Goh, S. S., 2005.
Automated Microaneurysm Segmentation and Detection
using Generalized Eigenvectors. Applications of
Computer Vision and the IEEE Workshop on Motion and
Video Computing, IEEE Workshop on (WACV-
MOTION), Breckenridge, Colorado, pp. 322-327.
doi:10.1109/ACVMOT.2005.26.
Hubbard, L. D., 2009. Digital Color Fundus Image Quality :
The Impact of Tonal Resolution. The Journal of
Ophthalmic Photography, 31(1), 15–20.
Kosti, M., & Kanakari, M. (2012). Education and diabetes
mellitus. Health Science Journal, 6(4), 654–662.
Li, S., Guo, S., He, F., Zhang, M., He, J., Yan, Y., Ding, Y.,
Zhang, J., Liu, J., Guo, H., Xu, S., & Ma, R., 2015.
Prevalence of diabetes mellitus and impaired fasting
glucose, associated with risk factors in Rural Kazakh
adults in Xinjiang, China. International Journal of
Environmental Research and Public Health, 12(1),
554–565. https://doi.org/10.3390/ijerph120100554.
Maule, P., Shete, A., Wani, K., Dawange, A., & Shinde, J.
V., 2016. GLCM feature extraction in Retinal Image.
International Journal of Advanced Research in Science
Management and Technology (IJARSMT) 2(4), 1–8.
Minajagi, P., & Mashal, M., 2015. Automated Detection of
Diabetic Retinopathy. International Journal of
Emerging Technology in Computer Science &
Electronics (IJETCSE) 14(2), 621–626.
Mohanaiah, P., Sathyanarayana, P., & Gurukumar, L.,
2013. Image Texture Feature Extraction Using GLCM
Approach. International Journal of Scientific &
Research Publication, 3(5), 1–5. https://doi.org/10.1.1.
414.96981.
Neuwirth, J., 1988. Diabetic retinopathy: what you should
know. Connecticut Medicine, 52(6), 361.
Novitasari, D. C. R., 2016. Sistem Diagnosis dan Deteksi
Dini Pencegahan Kebutaan pada Pasien Diabet
Berdasarkan Tingkat Stadium Diabetic Retinopathy.
Unpublished. UIN Sunan Ampel, Surabaya.
Öztürk, Ş., & Akdemir, B., 2018. Application of Feature
Extraction and Classification Methods for
ICMIs 2018 - International Conference on Mathematics and Islam
78