Table 11: Comparison MAPE of VAR and VAR – Kalman
Filter on each variable.
5 CONCLUSIONS
The model used in forecasting is the VAR (3) model.
With the equation as follows:
+
.....
................................................
+
+
.....................................................
From the model, it is known that the value of R
Square of rainfall is 0.56845. It shows that 56.845%
model is influenced by the variable that defined in the
model, the rest is influenced by other variables
outside the model. Then obtained the forecast error
based on the MAPE value is 0.634581019.
Forecasting rainfall using VAR (3) obtained high
enough residual value, so it is necessary to improve it
using the Kalman Filter method. Improvement VAR
forecasting using Kalman Filter proved to be very
optimal. It has decreased residual value very much.
The MAPE value of rainfall is become 0.008429293.
REFERENCES
Abidin, Z. 2018. Citraland Dikepung Banjir, Tunda Dulu
Malam Minggu Anda. Surabaya: Suarasurabaya.net.
Ardiansyah, M. 2016. Hujan kembali guyur Surabaya,
banjir di mana-mana. Surabaya: Merdeka.com.
Basuki, A. T., & Prawoto, N. 2016. Analisis Regresi dalam
Penelitian Ekonomi & Bisnis: Dilengkapi Aplikasi
SPSS & Eviews. Depok: Rajawali Press.
Chai Yoke Keng1, a. F., Shimizu, K., Imoto, T., Lateh, H.,
& Peng, a. K. 2017. Application of vector
autoregressive model for rainfall and groundwater level
analysis. AIP Conference Proceedings Volume 1870
Issue 1.
Fajerial, E. 2014. Hujan 4 Jam, Pemkot Surabaya: Cuma
Genangan. Surabaya: TEMPO.COM.
Herlinda, T. 2013. Peramalan Polusi Udara Oleh Karbon
Monoksida (CO) Di Kota Pekanbaru Dengan
Menggunakan Model Vector Autoregressive (VAR).
Pekanbaru: Universitas Islam Negeri Sultan Syarif
Kasim Riau.
ITS Media Center. 2017. Intensitas Curah Hujan Penyebab
Surabaya Dikepung Banjir. Surabaya.
Lutkepohl, H. 2005. New Introduction to Multiple Time
Series Analysis. Berlin: Springer.
Nugroho, A., Subanar, Hartati, S., & Mustofa, K. 2014.
Vector Autoregression (Var) Model for Rainfall
Forecast and Isohyet Mapping in Semarang – Central
Java – Indonesia. (IJACSA) International Journal of
Advanced Computer Science and Applications Vol. 5,
No. 11, 44-49.
Orpia, C., Mapa, D. S., & Orpia, J. 2014. Time Series
Analysis using Vector Auto Regressive (VAR) Model
of Wind Speeds in Bangui Bay and Selected Weather
Variables in Laoag City, Philippines. Munich Personal
RePEc Archive.
Pradipta, N. 2013. Analisis Pengaruh Curah Hujan di Kota
Medan. Jurnal: Saintia Matematika 1.
Rosita, T., Zaekhan, & Estuningsih, R. D. 2018. Vector
Autoregressive (VAR) for Rainfall Prediction.
International Journal of Engineering and Management
Research ISSN (ONLINE): 2250-0758, ISSN (PRINT):
2394-6962, 96-102.
Shcochrul, R. A. 2011. Cara Cerdas Menguasai Eviews.
Jakarta: Salemba Empat.
Suharsono, A., Aziza, A., & Pramesti, a. W. 2017.
Comparison of Vector Autoregressive (VAR) and
Vector Error Correction Models (VECM) for Index of
ASEAN Stock Price. International Conference and
Workshop on Mathematical Analysis and its
Applications 978-0-7354-1605-5.
Sulistiana, I., Hidayati, & Sumar. 2017. VAR and VECM
Approach for Inflation Relations Analysis, Gross
Regional Domestic Product (GDP), Word Tin Price, Bi
Rate and Rupiah Exchange Rate. Integrated Journal of
Business and Economics ISSN: 2549-3280.
Wei, W. W. 2006. Time Series Analysis: Univariate and
Multivariate Methods. United State of America:
Addison-Wesley Publishing Company.
Forecasting Rainfall at Surabaya using Vector Autoregressive (VAR) Kalman Filter Method
349