Aisyah, M., & Dewi, K. (2016). Stomach Disorder
Detection Through the Iris Image Using
Backpropagation Neural, (Icic), pp 1–6.
Bishop, C. M. (2013). Pattern Recognition and Machine
Learning. Journal of Chemical Information and
Modeling, Vol. 53, 049901
Dewi, A. K., Novianty, A., & Purboyo, T. W. (2017).
Stomach disorder detection through the Iris Image
using Backpropagation Neural Network. 2016
International Conference on Informatics and
Computing, ICIC 2016, Indonesia: Icic, pp 192–197.
Duda, R., Hart, P., & Stork, D. (2012). Patterns
Classification. John Wiley & Sons,.
Ernst, E. (1999). Iridology : A Systematic Review,
US National Library of Medicine National Institutes of
Health Search database, Vol 6(1), pp 7–9.
Frank, L., Ferreira, J. T., & Pellow, J. (2013). The validity
and reliability of iridology in the diagnosis of previous
acute appendicitis as evi- denced by appendectomy.
The South African Optometrist, Vol 72(3),pp 127–132.
Jogi, S. P. S. P., & Sharma, B. B. B. B. (2014).
Methodology of iris image analysis for clinical
diagnosis. 2014 International Conference on Medical
Imaging, m-Health and Emerging Communication
Systems, India: MedCom, pp 235–240.
Kematian, A., Jantung, P., & Tinggi, M. (2018). Angka
Kematian Penderita Jantung Masih Tinggi.
Labhade, Jyoti Dnyaneshwar, L. K. Chouthmol, S. D.
(2016). Diabetic Retinopathy Detection Using Soft
Computing Techniques. International Conference on
Automatic Control and Dynamic Optimization
Techniques (ICACDOT), pp 175–178.
Left Eye Iris Iridology Chart _ Iridology Chart. (n.d.).
Li, Y., Li, W., & Ma, Y. (2012). Accurate iris location
based on region of interest. Proceedings - 2012
International Conference on Biomedical Engineering
and Biotechnology, ICBEB 2012, pp 704–707.
Liu, C., & Wechsler, H. (2000). Evolutionary pursuit and
its application to face recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol
22(6), pp 570–582.
Nasseri, L., Shirazi, A. A. B., & Sadeghigol, N. (2011).
Tsallis entropy, PCA and neural network in novel
algorithm of iris classification. Proceedings of the 2011
World Congress on Information and Communication
Technologies, WICT 2011, pp 385–390.
Nusantara, R. G. A., Herlambang, P., Isnanto, R. R., & Z,
A. A. (2015). Application of Liver Disease Detection
Using Iridology with Back-Propagation Neural
Network, pp 123–127.
Permatasari, L. I., Novianty, A., & Purboyo, T. W. (2017).
Heart disorder detection based on computerized
iridology using support vector machine. ICCEREC
2016 - International Conference on Control,
Electronics, Renewable Energy, and Communications
2016, Conference Proceedings, pp 157–161.
Prayitno, A., Wibawa, A. D., & Purnomo, M. H. (2017).
Early detection study of Kidney Organ Complication
caused by Diabetes Mellitus using iris image color
constancy. Proceedings of 2016 International
Conference on Information and Communication
Technology and Systems, ICTS 2016, pp 146–149.
Rochmad, M. dkk. (2006). Osteoporosis Symptoms
Detection Through the Iris Using Image Clustering.
EEPIS, (0852-2863).
Samant, P., & Agarwal, R. (2017). Diagnosis of Diabetes
Using Computer Methods: Soft Computing Methods
for Diabetes Detection Using Iris, Vol 200(2), pp 57–
62.
Saputra, W., Tulus, T., Zarlis, M., Sembiring, R. W., &
Hartama, D. (2017). Analysis Resilient Algorithm on
Artificial Neural Network Backpropagation. Journal
of Physics: Conference Series, Vol 930(1).
Sitorus, M. A. R., Purnomo, M. H., & Wibawa, A. D.
(2016). Iris image analysis of patient Chronic Renal
Failure (CRF) using watershed algorithm. Proceedings
- 2015 4th International Conference on
Instrumentation, Communications, Information
Technology and Biomedical Engineering, ICICI-BME
2015, (October 2016), pp 54–58.
https://doi.org/10.1109/ICICI-BME.2015.7401334
Smith, L. I. (2002). A tutorial on Principal Components
Analysis Introduction. Statistics, pp 51- 52.
Tv, C. N. N. (2015). Home Nasional Internasional
Ekonomi Olahraga Teknologi Hiburan Gaya Hidup.
Wibawa, A. D., & Purnomo, M. H. (2006). Early detection
on the condition of Pancreas organ as the cause of
diabetes mellitus by real time iris image processing.
IEEE Asia-Pacific Conference on Circuits and
Systems, Proceedings, APCCAS, pp 1008–1010.
World Health Organization. (2017). Cardiovascular
Disease: World Heart Day 2017. Who.
Heart Disease Detection using Iridology with Principal Component Analysis (PCA) and Backpropagation Neural Network
263