(b) 
Figure 4: Graphic Result (a) Mamdani Method, (b) 
Sugeno Method  
Mamdani method commonly known as min-max 
method. The antecedents of the mamdani method 
have a minimum form, while the combined 
consequences have the maximum shape. Every rules 
in the mamdani method is implication (causal).  In 
addition, the rules set of mamdani method are also 
independent of each other (Setiadji, 2009). Thus, in 
the resulting graph shown input from temperature 
and humidity is small then the heater will work 
optimally to supply heat. 
The sugeno method is a fuzzy inference method 
with representation of IF-THEN-shaped rules. The 
outputs generated at the rule base stages are 
constants or linear equations (Syarif, 2016) 
(Wachdani, 2010). Collection and correlation 
between rules will shape the inferences. Then, in the 
defuzzification stage will be searched the average 
value (Kusumadewi,2010). The resulting output is 
crisp.  
4 CONCLUSIONS 
The result of the simulation shows that there is no 
significant difference. The mamdani method is 
efficient in the use of electrical power with average 
system workability. So, the drying time will be 
slightly longer than sugeno method. While the 
method sugeno able to make the system work in 
incentives with the resulting power consequences 
will be higher. Therefore, the use of fuzzy logic 
control method mamdani or sugeno will be better if 
adjusting the goals and desires to be achieved. If you 
want fast time use the Sugeno method. But, if you 
want to save power, it is better to choose mamdani 
method. 
REFERENCES 
Pusat Teknologi Agroteknologi. 2017. Sosialisasi Produk 
Mie Jagung Hasil Inovasi Techno Park Grobogan. 
Diakses http://pta.bppt.go.id/2-uncategorised/31-
sosialisasi-produk-mie-jagung-hasil-inovasi-techno-
park-grobogan pada Jum’at, 11 Mei 2018 pukul 20.18 
WIB. 
Masniah and Syamsuddin. 2013. Pemanfaatan Jagung 
dalam Pembuatan Aneka Macam Olahan untuk 
Memperkuat Ketahanan Pangan. Makalah disajikan 
dalam Seminar Nasional Serealia, Pusat Penelitian dan 
Pengembangan Tanaman Pangan. 
Badan Pengkajian and Pengembangan Kebijakan 
Perdagang. 2016. Potret Jagung Indonesia: Menuju 
Swasembada Tahun 2017.  Blueprint  : Kementerian 
Perdagangan Republik Indonesia. 
Resmisari, Asri. 2014. Tepung Jagung Komposit, 
Pembuatan dan Pengolahannya. Makalah disajikan 
dalam Seminar Nasional “Inovasi Teknologi Pertanian 
Spesifik Lokasi”, Banjarbaru,. 
Wylis,  et  al. 2014. Kajian Pembuatan Tepung Jagung 
dengan Proses Pengolahan yang Berbeda. Makalah 
disajikan dalam Seminar Nasional “Inovasi Teknologi 
Pertanian Spesifik Lokasi”, Banjarbaru,  
Sacchetti, G., et al. 2004. Effects of Extrusion 
Temperature and Feed Composition on The 
Functional, Physical and Sensory Properties of 
Chestnut and Rice Flour-based Snack-like Products. 
Food Research International Journal. Vol 37, pp 527-
534. 
Ahmed, Maruf., Akter, Sorifa., Jong-Bang Eun. 2010. 
Peeling, Drying Temperatures, and Sulphite-
Treatment Affect Physicochemical Properties and 
Nutritional Quality of Sweet Potato Flour. Food 
Chemistry Journal. Vol.121, pp 112-118. 
Mentari, Dyan Dwi O. 2015. Prototipe Pengeringan 
Biomassa Tipe Rotari (Uji Kinerja Rotary Dryer 
Berdasarkan Efisiensi Termal Pengeringan Serbuk 
Kayu untuk Pembuatan Biopelet). Skripsi Jurusan 
Teknik Kimia. Politeknik Negeri Sriwijaya: 
Palembang. 
Arief, Ulfah M., and Setiyo Wahyono. 2015. 
Pengendalian Suhu dan Humidity Pada Alat 
Pengering Seledri Menggunakan Kontrol Fuzzy Logic. 
Edu Elektrika Journal. Vol. 4, pp 21-26. 
Benvenga, Marco A.C., et al. 2010. Application of 
Simulated Annealing in Simulation and Optimization 
of Drying Process of Zea Mays Malt. Journal of Eng. 
Agríc. Vol.31, no.5. 
Farzaneh, Vahid, et al. 2016. Modelling of The Selected 
Physical Properties of The Fava Bean with Various 
Moisture Contents Using Fuzzy Logic Design. Journal 
of Food Process Engineering., Vol 40 (2) 
Al-Mahasneh, Majdi, et al. 2016. Application of Hybrid 
Neural Fuzzy System (ANFIS) in Food Processing and 
Technology.  Food Engineering Reviews. Vol.8, pp 
351-366. 
Nugroho, Fajar, et al.
 2017. Analysis of Maizena Drying 
System Using Temperature Control Based Fuzzy Logic