4 CONCLUSIONS
Simulation of control system for evaporator have
been done. The result shows that PID-fuzzy reach
faster rise and settling time on the step response
compare to the PID control system. The ramp
response show that the control system is able to adjust
the output in-line with the desired temperature. The
future work is finishing experimental setup which
implement the simulation result and do experiment of
deposition with the thermal evaporator.
ACKNOWLEDGEMENTS
We would like to thanks to Faculty of Engineering
UNNES for providing research grant for this work.
REFERENCES
Asraf, H. M., Dalila, K. A. N., Hakim, A. W. M., &
Hon, R. H. M. F. (2017). Development of
Experimental Simulator via Arduino-based PID
Temperature Control System using LabVIEW.
Journal of Telecommunication, Electronic and
Computer Engineering, Vol 9(1–5), 53–57.
Atia, D. M., & El-madany, H. T. (2016). Analysis and
design of greenhouse temperature control using
adaptive neuro-fuzzy inference system. Journal
of Electrical Systems and Information
Technology, Vol 4(1), pp 34-48
Choi, H. H., Yun, H. M., & Kim, Y. (2013).
Implementation of Evolutionary Fuzzy PID
Speed Controller for PM Synchronous Motor,
(c), Vol 11(2), pp 540-547
Huang, H., Zhang, S., Yang, Z., Tian, Y., Zhao, X.,
Yuan, Z., … Wei, Y. (2018). Modified Smith
fuzzy PID temperature control in an oil-
replenishing device for deep-sea hydraulic
system. Ocean Engineering, 149(November
2017), Vol 149, 14–22.
Jung, J., Leu, V. Q., Do, T. D., Kim, E., & Choi, H.
H. (2015). Adaptive PID Speed Control Design
for Permanent Magnet Synchronous Motor
Drives. IEEE Transactions on Power
Electronics, Vol 30(2), pp 900–908.
https://doi.org/10.1109/TPEL.2014.2311462
Khan, I. A., Amna, N., Kanwal, N., Razzaq, M.,
Farid, A., Amin, N., … Ahmad, R. (2017). Role
of oxygen pressure on the structural,
morphological and optical properties of c -Al
2
O
3
films deposited by thermal evaporator.
Materials Research Express, Vol 4(3), 036402.
Kobersi, I. S., Finaev, V. I., Almasani, S. A., & Abdo,
K. W. A. (2013). Control of the heating system
with fuzzy logic. World Applied Sciences
Journal, Vol 23(11), 1441–1447. 13156
Kumar, A., & Kumar, V. (2017). A novel interval
type-2 fractional order fuzzy PID controller:
Design, performance evaluation, and its
optimal time domain tuning. ISA Transactions,
Vol 68, pp 251–275.
Lal, D. K., Barisal, A. K., & Tripathy, M. (2018).
Load Frequency Control of Multi Area
Interconnected Microgrid Power System using
Grasshopper Optimization Algorithm
Optimized Fuzzy PID Controller. 2018 Recent
Advances on Engineering, Technology and
Computational Sciences (RAETCS), pp 1–6.
Liu, L., Pan, F., & Xue, D. (2015). Variable-order
fuzzy fractional PID controller. ISA
Transactions, Vol 55, pp 227–233.
Ochoa, G. V., & Forero, J. D. (2018). Fuzzy Adaptive
PID Controller Applied to an Electric Heater in
MATLAB / Simulink, Vol 11(58), pp 2849–
2856.
Premkumar, K., & Manikandan, B. V. (2014).
Adaptive Neuro-Fuzzy Inference System based
speed controller for brushless DC motor.
Neurocomputing, Vol 138, pp 260–270.
https://doi.org/10.1016/j.neucom.2014.01.038
Sahu, B. K., Pati, S., Mohanty, P. K., & Panda, S.
(2015). Teaching-learning based optimization
algorithm based fuzzy-PID controller for
automatic generation control of multi-area
power system. Applied Soft Computing
Journal, Vol 27, pp 240–249.
Singhala, P., Shah, D. N., & Patel, B. (2014).
Temperature Control using Fuzzy Logic.
International Journal of Instrumentation and
Control Systems (IJICS), Vol 4(1), pp 1–10.
Vasičkaninová, A., Bakošová, M., Mészáros, A., &
Oravec, J. (2015). Fuzzy controller design for a
heat exchanger. Intelligent Engineering
Systems (INES), 2015 IEEE 19th International
Conference On, pp 225–230.