Figure 3: Pair of Nanoseconds Pulses Produced by a Seven-
Core Fiber Laser Cavity for PIV Application.
The produced pulses energy and FWHM of the first
pulse and the second pulse are respectively (1.71 mJ,
13.6 ns) and (1.70 mJ, 10.2ns) (Fig. 3). The separation
of the neighboring peaks is actually equal to the round
trip time for our 25 m doped fiber and 40m for
undoped fiber. This multicore fiber laser configuration
is a good candidate to replace the classical Nd-Yag
laser and the one core fiber laser cavities for this
application.
4 CONCLUSION
In this paper, we have presented the design of seven
core fiber laser cavity that is able to emit a pair of
nanoseconds pulses separated by more than 500 ns
applied to PIV. The produced pulses energy and
FWHM of the first pulse and the second pulse can be
exceed the some millijoules and would satisfy PIV
requirements. This seven-core fiber laser cavity is a
very good candidate to replace the Nd-YAG laser used
classically in term of compact, low cost, beam quality,
and spatial alignment, and the one core fiber laser
cavity in term of emitted energy.
REFERENCES
Abedin, K., et al. 2012. ‘Cladding-pumped erbium-doped
multicore fiber amplifier’, Optics express, Vol.
20, No. 18, 20191-20200.
Adachi S., Koyamada Y. 2002. ‘Analysis and design of q-
switched erbium-doped fiber lasers and their
application to otdr’, Journal of Lightwave Technology,
Vol. 20, No. 8, 1506.
Beyrau, F., Weikl, M.C., Seeger, T., Leipertz, A. 2004.
‘Application of an optical pulse stretcher to coherent
anti-Stokes Raman spectroscopy’, Optics letters, Vol.
29, 2381-2383.
Huo, Y., Brown, R. T., King, G. G., Cheo P. K. 2004.
‘Kinetic modeling of q-switched high-power
ytterbium-doped fiber lasers’, Applied optics, Vol. 43,
No. 6, 1404-1411.
Huo, Y., King, G. G., Cheo, P. K. 2004.‘Second-harmonic
generation using a high-energy and tunable q-switched
multicore fiber laser’, IEEE Photonics Technology
Letters, Vol.16, No.10, 2224-2226.
Huo, Y., Cheo, P. K. 2005. ‘Analysis of transverse mode
competition and selection in multicore fiber lasers’,
JOSA B, Vol.22, No. 11, 2345-2349.
https://www.dantecdynamics.com/measurementprin
ciples-f-piv
, Accessed 10 October 2017.
Jouvard, J. M., Soveja, A., Lavisse, L. 2007. ‘Traitement
de surface métallique induit par faisceau laser Nd:
YAG Q-switch de marquage: modélisation d'un
impact laser’, 13èmes Journées Internationales de
Thermique, Fr, 1-5.
Kochanowicz, M., Dorosz, D., Zajac, A. 2011. ‘Phase- lo-
cking of 19-core yb3+ doped optical fibre’, Bulletin of
the Polish Academy of Sciences: Technical Sciences’,
Vol.59, No.4, 371-379.
Kremser, B., Ziolkowski E., Friedel S., Roehner M. Stolb-
erg, K., Klaus, Freyhold, N., ‘Processing of
Lightweight materials with high peak power ns-pulsed
disk lasers’, 8th International Conference on Photonic
Technologies LANE.
Limpert, J., Roser, F., Klingebiel, S., Schreiber, T., Wirth,
C., Peschel, T., et al. 2007. ‘The rising power of fiber
lasers and amplifiers’. IEEE J Sel Top Quantum
Electron, Vol.13, No.3, 537–539.
Majumdar, JD., Manna, I., 2013. ‘
Laser-assisted fabri-
cation of materials
’, Berlin Heidelberg: Springer-
Verlag.
Mgharaz, D., Brunel, M., Boulezhar, A. 2009. ‘Design of
a Bi-Pulse Fiber Laser for Particle Image Velocimetry
Applications’, Open Optics Journal, Vol. 3, 56-62.
Mgharaz, D., Rouchdi, N., Boulezhar, A., Brunel, M. 2011
‘Double-clad fiber laser design for particle image vel-
ocimetry and material science applications’, Optics
and Lasers in Engineering, Vol. 49, No. 1, 1-7.
Michaille, L., Bennett C. R., Taylor, D. M., Shepherd T. J.
2009. ‘Multicore photonic crystal fiber lasers for high
power/energy applications’, IEEE Journal of Selected
Topics in Quantum Electronics, Vol.15, No.2, 328-336.
Nassiri, A., Idrissi-Saba, H., Boulezhar, A. 2017. ‘Numer-
ical Analysis of Q-switched Seven-core Ytterbium
Doped Fiber Lasers: Application to Materials Process-
ing’, Nonlinear Optics, Quantum Optics: Concepts in
Modern Optics, Vol.48, 193-211.
Pan, Z., Meng, L., Ye, Q., Cai, H., Fang, Z., Qu, R.
(2010). ‘Repetition rate stabilization of the sbs q-
switched fiber laser by external injection’, Opt Express,
Vol.17, No.5, 3124–3129.
Shirakawa, A., Yamada, H., Matsumoto, M., Tokurakawa,
M., Ueda K.-i. 2011. ‘Q-switched multicore photonic
crystal fiber laser phase-locked by end-seal technique’,
Conference on Lasers and Electro-Optics/Pacific Rim,
Optical Society of America, C964.
Wang, Y., Xu, C. Q. 2007. ‘Actively Q-switched fiber las-
ers: switching dynamics and nonlinear processes’,
Prog Quantum Electron, Vol. 31, No. 3, 131–186.