4 CONCLUSION
Our numerical results, in the case of radially non-
symmetrical initial data (test 1 and 2), show that the blow-
up occurs at the nearest corner of the point of inoculation
from the 0.1 instant for n
0;1
and 0.4 for n
0;2
, which is com-
patible with cellular dynamics. In the case where the initial
datum is radially symmetrical(test3, the figures show that
the explosion of the solution of Keller-Segel classical mod-
els occurs at the center of the domain.
REFERENCES
A.Chertock and A.Kurganov (2008). A second-order pos-
itivity preserving central-upwind scheme for chemo-
taxis and haptotaxis models. Numer. Math., 111:169–
205.
A.J.Carrillo, S.Hittmeir, A. u. (2012). Cross diffusion and
nonlinear diffusion preventing blow up in the keller-
segel model. Math. Mod. Meth. Appl. Sci.
AK.Domelevo, P. O. (2005). A finite volume method for the
laplace equation on almost arbitrary two-dimensional
grids. M2AN Math. Model. Numer. Anal., 39(6):1203–
1249.
A.Marrocco (2003). Numerical simulation of chemotactic
bacteria aggregation via mixed finite elements. Math.
Mod. Numer. Anal., 4:617–630.
B.Andreianov, F. and F.Hubert (2007). Discrete duality fi-
nite volume schemes for leray-lions type elliptic prob-
lems on general 2d-meshes. Num. Meth. for PDEs,
23:145–195.
Bessemoulin-Chatard, M. and Jungel, A. (2014). A fi-
nite volume scheme for a keller-segel model with ad-
ditional cross-diffusion. IMA Journal of Numerical
Analysis, 34:96–122.
Boyer, F. and Hubert, F. (2008). Finite volume method for
2d linear and nonlinear elliptic problems with discon-
tinuities. SIAM J Numer Anal, 46:3032—-3070.
C. Chainais-Hillairet, S. K. and Mouton, A. (2013).
Study of discrete duality finite volume schemes
for the peaceman model. SIAM J. Sci. Comput.,
35(6):A2928–A2952.
C.Chainais-Hillairet (2009). Discrete duality finite vol-
ume schemes for two-dimensional driftdiffusion and
energy-transport models. Internat J Numer Methods
Fluids, 59:239–57.
C.Chainais-Hillairet, S. Krell, A. and Mouton (2015). Con-
vergence analysis of a ddfv scheme for a system de-
scribing miscible fluid flows in porous media. Numer-
ical Methods for Partial Differential Equations, Wiley,
315(3):1098–2426.
Delcourte, S. (2007). D
´
eveloppement de m
´
ethodes de vol-
umes finis pour la m
´
ecanique des fluides. Ph.d. thesis
(in french), University of Toulouse III, France.
F. Hermeline, S. L. and Omnes, P. (2008). A finite volume
method for the approximation of maxwell’s equations
in two space dimensions on arbitrary meshes. J Com-
put Phys, 227:9365––9388.
F.Hermeline (2000). A finite volume method for the approx-
imation of diffusion operators on distorted meshes. J.
Comput. Phys., 160(2):481–499.
G.Chamoun, M. and R.TalhoukF.Filbet (2006). A finite
volume scheme for the patlak-keller-segel chemotaxis
model. Numer. Math., 104:457–488.
Ha
b
skovec, J. and Schmeiser, C. (2009). Stochastic particle
approximation for measure valued solutions of the 2d
keller-segel system. J. Stat. Phys., 135:133–151.
Ha
b
skovec, J. and Schmeiser, C. (2011). Convergence of
a stochastic particle approximation for measure solu-
tions of the 2d keller-segel system. Commun. Part.
Diff. Eqs., 36:940–960.
Keller, E. and Segel, L. (1970). Initiation of slime mold
aggregation viewed as an instability. J. Theor. Biol.,
26:399–415.
Krell, S. (2011). Stabilized ddfv schemes for stokes prob-
lem with variable viscosity on general 2d meshes.
Numer Methods Partial Differential Eq, pages 1666–
–1706.
Krell, S. (2012). Finite volume method for general multi-
fluid flows governed by the interface stokes problem.
Math Models Methods Appl Sci, 22(5):1150–025.
Krell, S. and Manzini, G. (2012). The discrete duality
finite volume method for stokes equations on three-
dimensional polyhedral meshes. SIAM J Numer Anal,
50:808—-837.
N.Saito (2007). Conservative upwind finite-element method
for a simplified keller-segel system modelling chemo-
taxis. IMA J. Numer. Anal., 27:332–365.
N.Saito (2012). Error analysis of a conservative finite-
element approximation for the keller-segel model of
chemotaxis. comm. Pure Appl. Anal., 11:339–364.
N.Saito and T.Suzuki (2005). Notes on finite differ-
ence schemes to a parabolic-elliptic system modelling
chemotaxis. Appl. Math. Comput., 171:72–90.
Patlak, C. (2953). Random walk with persistence and exter-
nal bias. Bull. Math. Biophys, 15:311–338.
R. Strehl, A. Sokolov, D. K. and Turek, S. (2010). A flux-
corrected finite element method for chemotaxis prob-
lems. Comput. Meth. Appl. Math., 10:219–232.
S.Delcourte, K. D. and P.Omnes (2007). A discrete du-
ality finite volume approach to hodge decomposi-
tion and div-curl problems on almost arbitrary two-
dimensional meshes. SIAM J Numer Anal, 45:1142—
-1174.
Y. Coudiere, J.-P. V. and Villedieu, P. (1999). Convergence
rate of a finite volume scheme for a two-dimensional
convection-diffusion problem. M2AN Math. Model.
Numer. Anal., 33:493–516.
Y.Coudi
`
ere and F.Hubert (2011). A 3d discrete duality finite
volume method for nonlinear elliptic equations. SIAM
J Sci Comput, 33:1739—-1764.
Y.Coudi
`
ere and G.Manzini (2010). The discrete duality fi-
nite volume method for convectiondiffusion problems.
SIAM J Sci Comput, 47:4163—-4192.
The Finite Volume Method Applied to The Patlak-Keller-Segel Chemotaxis Model in a General Mesh
49