easily known, because if the key length is shorter
than plaintext then the next keyword is a repetition
of the keyword (Setyaningsih, 2011).
To overcome the weakness of vigenere cipher in this
paper will discuss the modification of vigenere
cipher which the encryption result is a colour image
with RGB colour code. In previous research there
are make modifications for vigenere cipher
technique, but it mostly modify keywords to reduce
the occurrence of phrase repetition (Hidayatulloh,
2014). While in this paper will modify the contents
of vigenere square. Previously there is also a modify
the contents of vigenere square, which contents are
modified into ASCII symbol (Prabowo, 2015), in
this paper the contents of vigenere square are
modified into decimal symbols 1 through 26. The
result of the vigenere square modification becomes
as follows (P.W. Springer, 2014) :
ABCDEFGHI J K LMNOPQRSTUVWXYZ
A 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
B 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1
C 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2
D 4 5 6 7 8 9 1011121314151617181920212223242526 1 2 3
E 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4
F 6 7 8 9 1011121314151617181920212223242526 1 2 3 4 5
G 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6
H 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7
I 9 1011121314151617181920212223242526 1 2 3 4 5 6 7 8
J 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9
K 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10
L 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11
M 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12
N 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13
O 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14
P 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Q 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
R 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
S 1920212223242526 1 2 3 4 5 6 7 8 9 101112131415161718
T 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
U 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
V 2223242526 1 2 3 4 5 6 7 8 9 101112131415161718192021
W 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
X 242526 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
Y 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Z 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Figure 3: Vigenere square modification
The encryption process of this vigenere cipher
modification is still the same as the classical
vigenere cipher, by finding the intersection of the
plaintext letter with the keyword letter. For an
example if the plaintext is THIS IS THE
PLAINTEXT and the keyword is DANY, then the
use of keys periodically is as follows.
TH I S I STHEP LA I NTEX
T
DANYDANYDANYDANYD
A
Plain text
Kunci
To get the ciphertext from the plaintext and the
keyword above, for the first plaintext letter T, drawn
vertical line of the letter T, and drawn a horizontal
line from column D, the intersection would be the
first letter of ciphertext 23. The same way is done on
the plaintext letters and letters of the next keyword.
ABCDEFGHI J KLMNOPQRSTUVWXYZ
A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
B 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1
C 3 4 5 6 7 8 9 1011121314151617181920212223242526 1 2
D 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3
E 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4
F 6 7 8 9 1011121314151617181920212223242526 1 2 3 4 5
G 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6
H 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7
I 9 1011121314151617181920212223242526 1 2 3 4 5 6 7 8
J 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9
K 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10
L 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11
M 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12
N 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13
O 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14
P 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Q 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
R 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
S 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
U 212223242526 1 2 3 4 5 6 7 8 9 1011121314151617181920
V 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
W 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
X 242526 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
Y 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Z 26 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Figure 4 : How to use vigenere square modification
The result of its encryption is as follows :
The mathematical encryption formula of the
vigenere cipher modification is slightly different
from the classic vigenere cipher formula, on the
classical vigenere cipher the mathematical formula
uses the decimal value of the character of 0….25,
that is :
A = 0 B = 1 C = 2 D = 3
E = 4 F = 5 G = 6 H = 7
I = 8 J = 9 K = 10 L = 11
M = 12 N = 13 O = 14 P = 15
Q = 16 R = 17 S = 18 T = 19
U = 20 V = 21 W = 22 X = 23
Y= 24 Z = 25
While in vigenere cipher modification in this paper
the mathematical formula uses decimal character
from 1…26, that is :
A = 1 B = 2 C = 3 D = 4
E = 5 F = 6 G = 7 H = 8
I = 9 J = 10 K = 11 L = 12
M = 13 N = 14 O = 15 P = 16
Q = 17 R = 18 S = 19 T = 20
U = 21 V = 22 W = 23 X = 24
Y= 25 Z = 26
So that will be obtained mathematical formula
vigenere cipher slightly different modification, the
formula is (2):
Encryption : Ci = ((Pi + Ki) mod 26) – 1 (2)