Advanced Composites-Cranfield Institute of
Technology.
Edwards, K., 1998. An overview of the technology of fibre-
reinforced plastics for design purposes, Mater. Des.
Vol. 19, pp. 1–10.
El-Habak, A., 1991. Mechanical behaviour of woven glass
fibre-reinforced composites under impact compression
load, Composites Vol. 22, pp. 129–134.
El-Habak, A., 1991. Mechanical behaviour of woven glass
fibre-reinforced composites under impact compression
load. Composites, Vol. 22, pp. 129–134.
Hasan, H. A., Karim, H., Sheikh, M. N., Hadi, M. N. S.,
2019. Moment-Curvature Behavior of Glass Fiber-
Reinforced Polymer Bar-Reinforced Normal-Strength
Concrete and High-Strength Concrete Columns. ACI
Structural Journal. Vol. 116, pp. 65-75.
Hayes, S.V., Adams, D., 1982. Rate sensitive tensile
impact properties of fully and partially loaded
unidirectional composites, J. Test. Eval. Vol. 10, pp.
61–68.
Hsiao, H., Daniel, I., 1998. Strain rate behavior of compo-
site materials, Compos. B Eng. Vol. 29, pp. 521–533
Huang, Z., Nie, X., Xia, Y., 2004. Effect of strain rate and
temperature on the dynamic tensile properties of GFRP,
J. Mater. Sci. Vol. 39, pp. 3479–3482.
Kawata, K., Hondo, A., Hashimoto, S., Takeda, N., Chung,
H., 1981. Dynamic behaviour analysis of composite
materials. Proceeding of Japan-US Conference on
Composite Materials, Japan Society for Composite
Materials, Tokyo, pp. 2–11.
Kim, Y.J., Kim, J.H., Park, S.J., 2015. Methods to enhance
the guaranteed tensile strength of GFRP rebar to 900
MPa with general fiber volume fraction. Construction
and Building Materials. 30 January 2015 Vol. 75, pp.
54-62
Kumar, P., Garg, A., Agarwal, B., 1986. Dynamic
compressive behaviour of unidirectional GFRP for
various fibre orientations, Mater. Lett. Vol. 4, pp. 111–
116.
Li, R., Lu, S., Choy, C., 1995. Tensile and compressive
deformation of a short-glassfiber-reinforced liquid
crystalline polymer, J. Thermoplast. Compos. Mater.
Vol. 8, pp. 304–322.
Menon, K.P.V., Pandalai, K.M., 1936. Coconut palm-a
monograph (Indian Central Coconut Committee
Ernakulam) Menon SRK. ‘The chemistry of Coir fiber.’
J.Text. Inst. Vol. 27, pp. 229.
Muhammad A.,I Wardana N. G. Pratikto, Irawan Y.S,
2015. The morphology of coconut fiber surface under
chemical treatment, Matéria (Rio J.), vol.20, pp. 169-
177.
Naresh, K., Shankar, K., Velmurugan, R., Gupta, N.K.,
2018. Statistical analysis of the tensile strength of
GFRP, CFRP and hybrid composites. Thin-Walled
Structures. Vol. 126, pp. 150-161.
Naresh, K.; Shankar, K.; Velmurugan, R.; Gupta, N.K..,
2017. Probability-based Studies on the Tensile Strength
of GFRP, CFRP and Hybrid Composites. Plasticity and
Impact Mechanics.
Procedia Engineering. Vol. 173,
pp.763-770.
Nevill, G., Ross, C., Jones, E., 1971. Dynamic compressive
strength and failure of steel reinforced epoxy
composites. J. Compos. Mater. Vol. 5. pp. 362–377.
Oliveira, F., Erkens, L., Fangueiro, R., Souto, A., 2012.
Surface Modification of Banana Fibers by DBD Plasma
Treatment. Plasma Chemistry and Plasma Processing,
Vol. 32, pp.259-273.
Ou, Y., Zhu, D., 2015. Tensile behavior of glass fiber
reinforced composite at different strain rates and
temperatures, Constr. Build. Mater. Vol. 96, pp. 648–
656.
Paciornik, S., Martinho, F., De Mauricio, M., D’Almeida,
J., 2003. Analysis of the mechanical behavior and
characterization of pultruded glass fiber–resin matrix
composites, Compos. Sci. Technol. Vol. 63, pp. 295–
304.
Pommet M., Juntaro J., Mantalaris A. and Lee A. F., 2008.
Surface Modification of Natural Fibers Using Bacteria:
Depositing Bacterial Cellulose onto Natural Fibers To
Create Hierarchical Fiber Reinforced Nanocomposites.
Biomacromolecules. Vol. 9, pp. 1643-51.
Rajan, A., Abraham, T. E., 2007. Coir Fiber–Process and
Opportunities, Journal of Natural Fibers, Vol. 3, pp. 29-
41.
Reis, P.N.B., Neto, M.A., Amaro, A. M., 2018. Effect of
the extreme conditions on the tensile impact strength of
GFRP composites. Composite Structures. Vol. 188, pp.
48-54.
Richardson, M., Wisheart, M., 1996. Review of low-
velocity impact properties of composite materials,
Compos. Appl. Sci. Manuf. Vol. 27, pp. 1123–1131
Rossini, M., Nanni, A., Saqan, E., 2019. Prediction of the
creep rupture strength of GFRP bars. Construction and
Building Materials, Vol. 227.
Rotem, A., Lifshitz, J., 1971. Longitudinal strength of
unidirectional fibrous composite under high rate of
loading, Proc. 26th Annual Tech. Conf. Soc. Plastics
Industry Reinforced Plastics, Composites Division,
Washington, DC, Section, pp. 1–10.
Shahidi S., Wiener J. and Ghoranneviss M., 2013. Surface
Modification Methods for Improving the Dyeability of
Textile Fabrics. under CC BY 3, ISBN 978-953-51-
0892-4.
Shokrieh, M.M., Omidi, M.J., 2009. Compressive response
of glass–fiber reinforced polymeric composites to
increasing compressive strain rates, Compos. Struct.
Vol. 89, pp.517–523.
Sierakowski, R., 1997. Strain rate effects in composites.
Appl. Mech. Rev. Vol. 50, pp. 741–761.
Takeda, N., Wan, L., 1995. Impact compression damage
evolution in unidirectional glass fiber reinforced
polymer composites, High Strain Rate Effects on
Polymer, Metal and Ceramic Matrix Composites and
Other Advanced Materials, pp. 109–113.
Tay, T., Ang, H., Shim, V., 1995. An empirical strain rate-
dependent constitutive relationship for glass-fibre
reinforced epoxy and pure epoxy, Compos. Struct. Vol.
33, pp. 201–210
Ugbolue, S.C.O. 1990. Structure-property relationships in
textile fibres. Text. Inst
. Vol. 20, pp. 1.