REFERENCES
Bachant, P. and Wosnik, M. (2015). Performance
measurements of cylindrical- and spherical- helical
crossflow marine hydrokinetic turbines, with estimates
of exergy efficiency. Renew Energy.
Castelli, M.R., G. Ardizzon, L. Battisti, E. Benini, G.
Pavesi. (2010). Modeling strategy and numerical
validation for a Darrieus vertical axis micro-wind
turbine. in: ASME 2010 International Mechanical
Engineering Congress and Exposition, Vancouver,
British Columbia, Canada.
Dai YM, W. Lam. (2009). Numerical study of straight-
bladed darrieus-type tidal turbine. Proc. Institution
Civ. Eng. Energy.
Duvoy, P., Hydrokal., T. H. (2012). A Moduleforin-stream
Hydro Kinetic Resource Assessment. Computer &
Geosciences. 39: 171–81.
Fish, F. E., and Battle, J. M. (1995). Hydrodynamic
Design of the Humpback Whale Flipper. Journal of
Morphology,pp.5160.doi:10.1002/jmor.1052250105.
Vol. 225
H. Johari, C. Henoch, D. Custodio, and A. Levshin.
(2007). Effects of Leading-Edge Protuberances on
Airfoil Performance, AIAA Journal Vol. 45, No. 11.
Hydrovolts. (2006). In-stream Hydrokinetic Turbines.
Power tech Labs, Available from hydrovolts.com.
Jing, Fengmei. (2014). Experimental Research on Tidal
Current Vertical Axis Turbine with Variable-Pitch
Blades. Ocean Engineering, 88:228-241.
Khan, M. J., Bhuyan, G., Iqbal, M. T., Quaicoe, J. E.
(2009). Hydro kinetic Energy Conversion Systems and
Assessment of Horizontal and Vertical Axis Turbines
for River and Tidal Applications: A Technology Status
Review. Applied Energy. 86(10): 1823–35.
Kirke, B. K. and Lazauskas, L. (2011). Limitations of fixed
pitch Darrieus hydrokinetic turbines and the challenge
of variable pitch. Renewable Energy 36 2011 893-
897: Elsevier.
Li, Shengmao dan Yan Li. (2010). Numerical study on the
performance effect of solidity on the straight-bladed
vertical axis wind turbine. Scientific Research Fund of
Heilongjiang Provincial Education Department
(No.:1153h01); Scientific Research Foundation for the
Returned Overseas Chinese Scholars.
Madi, M E N Sasono, Y S Hadiwidodo and S H Sujiatanti.
(2019). Application of Savonius Turbine behind The
Propeller as Energy Source of Fishing Vessel in
Indonesia. IOP Conf. Series: Materials Science and
Engineering, IOP Publisher.
Malipeddi A.R. and D. Chatterjee. (2012). Influence of
duct geometry on the performance of Darrieus
hydroturbine. Renew. Energy.
Marsh, D. Ranmuthugala, I. Penesis, G. Thomas. (2012).
Three dimensional numerical simulations of a
straight-bladed vertical axis tidal turbine. in:
Proceedings of the 18th Australasian Fluid Mechanics
Conference, Launceston, Tasmania.
Marsh, D. Ranmuthugala, I. Penesis, G. Thomas. (2013).
Performance predictions of a straight-bladed vertical
axis turbine using double-multiple streamtube and
computational fluid dynamics. J. Ocean Technol.
Marsh, D. Ranmuthugala, I. Penesis, G. Thomas. (2014).
Numerical simulation of straight-bladed vertical axis
turbines, in: 2nd Asian Wave and Tidal Energy
Conference (AWTEC), Tokyo Japan.
Marsh, D. Ranmuthulaga, I. Penesis and G. Thomas.
(2015). Three dimensional numerical simulation of
straight-bladed vertical axis tidal turbines
investigating power output, torque ripple and
mounting force, Renewable Energy 83 67-77: Elsevier.
Marsh, D. Ranmuthulaga, I. Penesis and G. Thomas.
(2015). Numerical investigation of the influence of
blade helicity on the performance characteristic of
vertical axis tidal turbine, Renewable Energy 81 926-
935: Elsevier.
Marsh, D. Ranmuthulaga, I. Penesis and G. Thomas.
(2016). Numerical simulation of the loading
characteristics of straight and helical-bladed vertical
axis tidal turbines. Renewable Energy 94 418-428:
Elsevier.
Marsh, D. Ranmuthulaga, I. Penesis and G. Thomas.
(2017). The influence of turbulence model and two and
three-dimensional domain selection on the simulated
performance characteristics of vertical axis tidal
turbines, Renewable Energy 105 106-116: Elsevier.
Mukhtasor, Susilohadi, Erwandi, Pandoe, W., Iswadi, A.,
Firdaus, A. M., Prabowo, H., Sudjono, E., Prasetyo, E.
dan Iluhade, D. (2014). Potensi Energi Laut
Indonesia. Badan Litbang Kementrian Energi dan
Sumberdaya Mineral (ESDM) dan Asosiasi Energi
Laut Indonesia (ASELI).
Quang Le, Kwang Soo Le, Jin Soon Park and Jin Hwan
Ko. (2014). Flow-driven rotor simulation of vertical
axis tidal turbines: A comparison of helical and
straight blades. Int. J. Nav. Archit. Ocean Eng.
Rawlings G. (2008). Parametric characterization of an
experimental vertical axis hydro turbine. MSC
dissertation. University of British Columbia.
Satrio, Dendy., I.K.A.P Utama., Mukhtasor. (2016).
Vertical Axis Current Turbine Advantages and
Challenges Review. Proceeding of Ocean, Mechanical
and Aeroscope. Science and Engineering Vol.3, Hal.
64-71. Universiti Malaysia Terengganu, Malaysia.
Satrio, Dendy., I.K.A.P Utama., Mukhtasor. (2018). The
influence of time step setting on the CFD simulation
result of vertical axis tidal current turbine. Journal of
Mechanical Engineering and Sciences. Volume 12,
Issue 1, Hal. 3399-3409. UMP Publisher.
Satrio, Dendy., I.K.A.P Utama., Mukhtasor. (2018).
Numerical Investigation of Contra Rotating Vertical-
Axis Tidal Current Turbine. Journal of Marine Science
and Application. Hal. 3399-3409. UMP Publisher.
Satrio, Dendy., I.K.A.P Utama., Mukhtasor. (2018).
Performance Enhancement Effort for Vertical Axis
Current Turbine in Low Water Velocity.
Proceeding of The 4
th
Asian Wave and Tidal Energy
Converence (AWTEC). National Taiwan Ocean
University, Taiwan.