10%, and 15%. Bioethanol productivity in
zymomonas mobilis inoculum variation of 5%, 10%,
and 15% showed increased results, namely 2.49%,
2.6%, and 2.66%. The highest results were obtained
in the zymomonas mobilis inoculum variation 15%
by 2.66%, while the lowest results were obtained in
the zymomonas mobilis inoculum variation 5% by
2.49%. It can be concluded that the higher the level
of bioethanol, the higher the value of bioethanol
productivity
4 CONCLUSIONS
Saba banana hump can produce starch that has a white
color. Starch from kepok banana weevil hydrolyzed
using acid to produce glucose as much as 14.01%
with 20 grams of starch content. The highest
bioethanol content is 79.01% and the highest
productivity that obtain was 2.66 g/L.Hours.
REFERENCES
Anal, A. K. and Singh, H. (2007) ‘Recent advances in
microencapsulation of probiotics for industrial
applications and targeted delivery’, Trends in Food
Science and Technology, pp. 240–251. doi:
10.1016/j.tifs.2007.01.004.
Atwell, W.A., Hood, L., Lineback, D., Varriano-Morston,
E., Zobel, H. (1988) ‘The terminology and
methodology associated with basic starch phenomena’,
Cereal Food World, 33, pp. 306–311.
Balat, M., Balat, H. and Öz, C. (2008) ‘Progress in
bioethanol processing’, Progress in Energy and
Combustion Science, pp. 551–573. doi:
10.1016/j.pecs.2007.11.001.
Geeta, M. S. G. & G. S. (2007) ‘Effectivenes of Fungal
Pretreament of Agro Residues on Etanol Production by
Yeast and Zymomonas mobilis’, 2, pp. 301–304.
Gunasekaran, P. and Chandra Raj, K. (1999) ‘Ethanol
fermentation technology - Zymomonas mobilis’,
Current Science.
Hisreidi (2016) Pengaruh Volume Inokulum Pada Produksi
Bioetanol Dari Kulit Pisang Kepok Kuning (Musa
paradisiaca L. var. Kepok Kuning) Menggunakan
Zymomonas mobilis Dengan Metode Solid State
Fermentation (SSF). Universitas Sanata Dharma.
Kusumaningati, M. A., Nurhatika, S. and Muhibuddin, A.
(2013) ‘Potensi Kapang Aspergillus sp. dalam Proses
Hidrolisis untuk Produksi Etanol dari Sampah Sayur
dan Buah Pasar Wonokromo Surabaya’, Makalah Orasi
Ilmiah.
Leon (2016) AC SC, Food Hydrocolloids. Elsevier Ltd. doi:
10.1016/j.foodhyd.2016.01.008.
Lin, Y. and Tanaka, S. (2006) ‘Ethanol fermentation from
biomass resources: Current state and prospects’,
Applied Microbiology and Biotechnology, pp. 627–642.
doi: 10.1007/s00253-005-0229-x.
Natalia, S. . (2015) Viabilitas enkapsulasi sinbiotik isolat
BAL dengan berbagai bahan enkapsulasi selama masa
simpan dan simulasi asam lambung. Universitas
Sumatera Utara.
Pacifico, C., Wu, W. and Fraley, M. (2001) ‘Sensitive
substance encapsulation’, US Patent 6,251,478, 1(12),
pp. 1–8.
Rodrigues, A. and Emeje, M. (2012) ‘Recent applications
of starch derivatives in nanodrug delivery’,
Carbohydrate Polymers, pp. 987–994. doi:
10.1016/j.carbpol.2011.09.044.
Setiadji, S. et al. (2017) ‘Alternatif Pembuatan Biodiesel
Melalui Transesterifikasi Minyak Castor (Ricinus
communis) Menggunakan Katalis Campuran Cangkang
Telur Ayam dan Kaolin’, Jurnal Kimia VALENSI, 3(1),
pp. 1–10. doi: 10.15408/jkv.v3i1.4778.
Widyaningsih, S., Kartika, D. and Tri Nurhayati, Y. (2012)
‘PENGARUH PENAMBAHAN SORBITOL DAN
KALSIUM KARBONAT TERHADAP
KARAKTERISTIK DAN SIFAT BIODEGRADASI
FILM DARI PATI KULIT PISANG’, Molekul, 7(1), p.
69. doi: 10.20884/1.jm.2012.7.1.108.
Wijaya, C. et al. (2019) ‘Heliyon Isolation and
characterization of starch from Limnophila aromatica’,
Heliyon. Elsevier Ltd, 5(October 2018), p. e01622. doi:
10.1016/j.heliyon.2019.e01622.
Winarno, F. G. (2004) Kimia Pangan dan Gizi
. Jakarta: PT.
Gramedia.
Wu, W., Roe, W. and Gimino, V. (2000) ‘Low melt
encapsulation with high laurate canola oil’, US Patent