ACKNOWLEDGEMENTS
The authors are grateful for the main financial
support from Ministry of Research, Technology and
Higher Education, Republic of Indonesia through the
Decentalization- Penelitian Unggulan Perguruan
Tinggi (PTUPT) Research Grant 2019, coordinated
by Directorate of Research and Community
Services, Universitas Sumatera Utara (DRPM-USU)
with Contract No: 138/UN5.2.3.1/PPM/KP-
DRPM/2019.
REFERENCES
Albuquerque, M. C. G., Jiménez-Urbistondo, I.,
Santamaría-González, J., Mérida-Robles, J. M.,
Moreno-Tost, R., Rodríguez-Castellón, E., Jiménez-
López, A., Azevedo, D. C. S., Cavalcante Jr., C. L., &
Maireles-Torres, P. (2008). CaO supported on
mesoporous silicas as basic catalysts for
transesterification reactions. Applied Catalysis A:
General, 334(1–2), 35–43. https://doi.org/
https://doi.org/10.1016/j.apcata.2007.09.028
AlOthman, Z. A., & Apblett, A. W. (2010). Synthesis and
characterization of a hexagonal mesoporous silica with
enhanced thermal and hydrothermal stabilities.
Applied Surface Science, 256(11), 3573–3580.
https://doi.org/10.1016/j.apsusc.2009.12.157
Andriayani, A., Sembiring, S. B., Aksara, N., & Sofyan,
N. (2013). Synthesis of Mesoporous Silica from
Tetraethylorthosilicate by Using Sodium Ricinoleic as
a Template and 3-Aminopropyltrimethoxysilane as
Co-Structure Directing Agent with Volume Variation
of Hydrochloric Acid 0.1 M. Advanced Materials
Research, 789, 124–131. https://doi.org/10.4028/
www.scientific.net/AMR.789.124
Andriayani, Nainggolan, H., Taufik, M., Simamora, S., &
Sofyan, N. (2018). The effect concentration of
tetraethylorthosilicate and variation HCl 0.1M for
synthesis mesoporous silica using oleic acid as
template and 3-aminopropyltrimethoxysilane as co-
structure directing Agent. Journal of Physics:
Conference Series, 1116(4), 0–8.
https://doi.org/10.1088/1742-6596/1116/4/042006
Gregg S. J., and Sing, K. S. W. (1982). Adsorpsi, Surface
Area and Porosity (Second Edi). Academic Press.
Hasanzadeh, M., Shadjou, N., de la Guardia, M.,
Eskandani, M., & Sheikhzadeh, P. (2012).
Mesoporous silica-based materials for use in
biosensors. TrAC - Trends in Analytical Chemistry,
33, 117–129.
https://doi.org/10.1016/j.trac.2011.10.011
Khalil, K. M. S. (2007). Cerium modified MCM-41
nanocomposite materials via a nonhydrothermal direct
method at room temperature. Journal of Colloid and
Interface Science, 315(2), 562–568.
https://doi.org/10.1016/j.jcis.2007.07.030
Kumari, S., & Sahare, P. D. (2013). Optical studies of
fluorescent mesoporous silica nanoparticles. Journal
of Materials Science and Technology, 29(8), 742–746.
https://doi.org/10.1016/j.jmst.2013.05.013
Li, B., Ma, W., Han, C., Liu, J., Pang, X., & Gao, X.
(2011). Preparation of MCM-41 incorporated with
transition metal substituted polyoxometalate and its
catalytic performance in esterification. Microporous
and Mesoporous Materials, 156(1), 73–79.
https://doi.org/10.1016/j.micromeso.2012.02.017
Liu, H., Lu, G., Guo, Y., Wang, Y., & Guo, Y. (2010).
Synthesis of spherical-like Pt-MCM-41 meso-
materials with high catalytic performance for
hydrogenation of nitrobenzene. Journal of Colloid and
Interface Science
, 346(2), 486–493.
https://doi.org/10.1016/j.jcis.2010.03.018
Park, Y., Kang, T., Kim, P., & Yi, J. (2006).
Encapsulation method for the dispersion of NiO onto
ordered mesoporous silica, SBA-15, using
polyethylene oxide (PEO). Journal of Colloid and
Interface Science, 295(2), 464–471.
https://doi.org/10.1016/j.jcis.2005.09.006
Schubert, Ulrich S. and Husing, N. (2005). Synthesis of
Inorganic Materials (2nd, Revis ed.). Wiley-VCH.
Setiadji, S., B, N. T., Sudiarti, T., H, E. P., & N, B. W.
(2017). Alternatif Pembuatan Biodiesel Melalui
Transesterifikasi Minyak Castor ( Ricinus communis )
Menggunakan Katalis Campuran Cangkang Telur
Ayam dan Kaolin. 3(1), 1–10.
Shah, A. T., Li, B., & Ali Abdalla, Z. E. (2009). Direct
synthesis of Ti-containing SBA-16-type mesoporous
material by the evaporation-induced self-assembly
method and its catalytic performance for oxidative
desulfurization. Journal of Colloid and Interface
Science, 336(2), 707–711.
https://doi.org/10.1016/j.jcis.2009.04.026
Sing, K. S. W., & Williams, R. T. (2004). Physisorption
Hysteresis Loops and the Characterization of
Nanoporous Materials. 1, 773–782.
https://doi.org/10.1260/0263617053499032
Slowing, I. I., Vivero-Escoto, J. L., Wu, C. W., & Lin, V.
S. Y. (2008). Mesoporous silica nanoparticles as
controlled release drug delivery and gene transfection
carriers. Advanced Drug Delivery Reviews, 60(11),
1278–1288. https://doi.org/10.1016/j.addr.2008.03.012
Smith, A. L. (1960). Infrared spectra-structure correlations
for organosilicon compounds. Spectrochimica Acta,
16(1–2), 87–105. https://doi.org/10.1016/0371-
1951(60)80074-4
Yan, Z., Li, G., Mu, L., & Tao, S. (2006). Pyridine-
functionalized mesoporous silica as an efficient
adsorbent for the removal of acid dyestuffs. Journal of
Materials Chemistry, 16(18), 1717–1725.
https://doi.org/10.1039/b517017f
Zhao, Q., Zhou, X., Ji, M., Ding, H., Jiang, T., Li, C., &
Yin, H. (2011). Stability and textural properties of
cobalt incorporated MCM-48 mesoporous molecular
sieve. Applied Surface Science, 257(7), 2436–2442.
https://doi.org/10.1016/j.apsusc.2010.09.114