Local Antimagic Vertex Coloring of Wheel Graph and Helm Graph
F. F. Hadiputra
1
, D. R. Silaban
1*
and T. K. Maryati
2
1
Department of Mathematics, Universitas Indonesia, Depok, Indonesia
2
Department of Mathematics Education, UIN Syarif Hidayatullah Jakarta, Indonesia
Keywords: Local Antimagic, Vertex Coloring, Wheel Graph, Helm Graph.
Abstract: Let ๐œ’
๏ˆบ
๐บ
๏ˆป
be a chromatic number of vertex coloring of a graph G. A bijection ๐‘“:๐ธโ†’
๏ˆผ
1,2,3,โ€ฆ,
|
๐ธ
๏ˆบ
๐บ
๏ˆป|
๏ˆฝ
is
called local antimagic vertex coloring if for any adjacent vertices do not share the same weight, where the
weight of a vertex in ๐บ is the sum of the label of edges incident to it. We denote the minimum number of
distinct weight of vertices in ๐บ so that the graph ๐บ admits a local antimagic vertex coloring as ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐บ
๏ˆป
. In
this study, we established the missing value of ๐œ’
๎ฏŸ๎ฏ”
for a case in wheel graph and ๐œ’
๎ฏŸ๎ฏ”
for helm graph.
1 INTRODUCTION
Suppose ๐บ
๏ˆบ
๐‘‰,๐ธ
๏ˆป
be a connected simple graph such
that ๐‘ฃ,๐‘ขโˆˆ ๐‘‰
๏ˆบ
๐บ
๏ˆป
. We define local antimagic vertex
coloring of ๐บ as a bijection ๐‘“:๐ธโ†’
๏ˆผ
1,2,3,โ€ฆ,
|
๐ธ
๏ˆบ
๐บ
๏ˆป|
๏ˆฝ
such that for any adjacent vertices
๐‘ฃ and ๐‘ข, ๐‘ค
๏ˆบ
๐‘ฃ
๏ˆป
๎ต๐‘ค
๏ˆบ
๐‘ข
๏ˆป
, which ๐‘ค
๏ˆบ
๐‘ฃ
๏ˆป
๎ตŒ
โˆ‘
๐‘“
๏ˆบ
๐‘’
๏ˆป
๎ฏ˜โˆˆ๎ฎพ
๏ˆบ
๎ฏ€
๏ˆป
for every edge ๐‘’ incident to ๐‘ฃ. We are able to
distinguish weights of vertices by assigning distinct
colors for every distinct weights. Using a well-
known notation, ๐œ’
๏ˆบ
๐บ
๏ˆป
denoted as the chromatic
number of ๐บ. The local antimagic vertex chromatic
number ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐บ
๏ˆป
is the minimum number of colors for
vertices taken over all colorings induced by local
antimagic vertex coloring of ๐บ. A remark written by
Arumugam et al. (2017) tells us that for any graph
๐บ, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐บ
๏ˆป
๎ต’๐œ’
๏ˆบ
๐บ
๏ˆป
.
Hartsfield & Ringel (1990) introduced the term
of antimagic labeling of a graph. We can see many
variations of this antimagic labeling. One of many
variations is a concept of local antimagic vertex
coloring introduced by Arumugam et al. (2017).
They also give the exact values for ๐œ’
๎ฏŸ๎ฏ”
for wheel ๐‘Š
๎ฏก
when ๐‘›โ‰ข0
๏ˆบ
mod4
๏ˆป
. For ๐‘›โ‰ก0
๏ˆบ
mod4
๏ˆป
, they found
only the interval.
Arumugam et al. (2018) found the exact value
๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐บ
๏ˆป
for some corona product graphs. Nazula et
al. (2018) established the exact value of ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐บ
๏ˆป
for
certain unicyclic graphs, which are kite graphs and
cycle graphs with two neighbour pendants. Lau et al.
(2018) showed further results of local antimagic
vertex coloring for some graphs and established a
sharp lower bound for graphs which we use in our
proof. Haslegrave (2018) proved a conjecture
proposed by Arumugam et al. whether any
connected graph other than ๐พ
๎ฌถ
admits a local
antimagic vertex coloring, by using probabilistic
method.
In this paper, we study local antimagic vertex
coloring for wheel graphs and helm graphs. We
establish an exact value of ๐œ’
๎ฏŸ๎ฏ”
for a case in wheel
graph, that has not been proved yet by Arumugam et
al. Also, we have exact values of ๐œ’
๎ฏŸ๎ฏ”
for helm
graphs. Silaban et al. (2009) gave an efficient way of
labeling by defining some conditional function
which we use much in our paper.
2 SUPPLEMENTARY
PROPERTIES
For convenience, we would like to introduce some
simpler notations that we use in this paper. Firstly,
we denote ๐‘–โˆˆ
๏ˆพ
๐‘Ž,๐‘
๏ˆฟ
as ๐‘– being an integer greater or
equal to ๐‘Ž, while lower or equal to ๐‘. Next, we add
additional index of ๐‘’ or ๐‘œ, as in ๐‘–โˆˆ
๏ˆพ
๐‘Ž,๐‘
๏ˆฟ
๎ฏ˜
that has
additional information of ๐‘– an even integer, while
using ๐‘œ simply means ๐‘– an odd integer.
Silaban et al. (2009) introduced a function which
checks a condition of certain value and returns
according to whether the condition is satisfied. One
of the example is the odd
๏ˆบ
๐‘ฅ
๏ˆป
function which defined
as follows
Hadiputra, F., Silaban, D. and Maryati, T.
Local Antimagic Vertex Coloring of Wheel Graph and Helm Graph.
DOI: 10.5220/0010138400002775
In Proceedings of the 1st International MIPAnet Conference on Science and Mathematics (IMC-SciMath 2019), pages 185-189
ISBN: 978-989-758-556-2
Copyright
c
๎€ 2022 by SCITEPRESS โ€“ Science and Technology Publications, Lda. All rights reserved
185
odd
๏ˆบ
๐‘–
๏ˆป
๎ตŒ๎ตœ
1, if ๐‘–โ‰ก1
๏ˆบ
mod2
๏ˆป
,
0, otherwise.
We will use this convenient function in our
proofs. Other than that, we would like to introduce
another function called modulo congruency check.
Modulo congruency check ๐‘š
๏ˆบ
๐‘ฅ,๐‘ก
๏ˆป
is a function that
values to 1 if ๐‘ฅ is equivalent ๐‘ก by mod 4, while
otherwise 0. Formally, we write as follows
๐‘š
๏ˆบ
๐‘–,๐‘ก
๏ˆป
๎ตŒ๎ตœ
1, if ๐‘–โ‰ก๐‘ก
๏ˆบ
mod4
๏ˆป
,
0, otherwise.
We use a definition of the wheel graph ๐‘Š
๎ฏก
of
order ๐‘›๎ต…1 with the vertex set
๐‘‰
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ตŒ
๏ˆผ
๐‘,๐‘ฃ
๎ฏœ
|๐‘–โˆˆ
๏ˆพ
1,๐‘›
๏ˆฟ๏ˆฝ
and the edge set
๐ธ
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ตŒ
๏ˆผ
๐‘ฃ
๎ฏก
๐‘ฃ
๎ฌต
,๐‘๐‘ฃ
๎ฏก
,๐‘ฃ
๎ฌต
๐‘ฃ
๎ฏœ๎ฌพ๎ฌต
,๐‘๐‘ฃ
๎ฏœ
|๐‘–โˆˆ
๏ˆพ
1,๐‘›๎ต† 1
๏ˆฟ๏ˆฝ
.
Arumugam et al. (2017) proved the exact value
of ๐œ’
๎ฏŸ๎ฏ”
in many cases of wheel graphs as follows
Theorem 1 (Arumugam et al., 2017). For the wheel
๐‘Š
๎ฏก
of order ๐‘›๎ต…1, we have
๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ตŒ๎ตœ
4, if ๐‘›โ‰ก1,3
๏ˆบ
mod4
๏ˆป
,
3, if ๐‘›โ‰ก2
๏ˆบ
mod4
๏ˆป
.
For ๐‘›โ‰ก0
๏ˆบ
mod4
๏ˆป
, the authors found only the
interval 3๎ต‘๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ต‘5. They also found a sharp
lower bounds for arbitrary tree graph. Lau et al.
(2018) generalizes this theorem as follows
Theorem 2 (Lau et al., 2018). Let ๐บ be a graph
having ๐‘˜ pendants. If ๐บ is not ๐พ
๎ฌถ
, then ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐บ
๏ˆป
๎ต’
๐‘˜๎ต…1 and the bound is sharp.
The preceding theorem is useful for finding a
lower bound of ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
. We continue this reasoning
to have sharp lower bounds for this particular helm
graphs.
3 MAIN RESULTS
We start to establish our main theorem.
Theorem 3. Let ๐‘›โ‰ก0
๏ˆบ
mod4
๏ˆป
. Then ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ตŒ3.
Proof. It is known that
๐œ’
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ตŒ๎ตœ
4, if ๐‘› is odd,
3, if ๐‘› is even.
(1)
Therefore, for ๐‘›โ‰ก0
๏ˆบ
mod4
๏ˆป
, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ต’3. To
show ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ต‘3 for ๐‘›โ‰ก0
๏ˆบ
mod4
๏ˆป
, we will
define ๐‘“:๐ธ
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
โ†’
๏ˆผ
1,2,3,โ€ฆ,
|
๐ธ
๏ˆบ
๐‘Š
๎ฏก
๏ˆป|
๏ˆฝ
that admits
local antimagic vertex coloring of ๐‘Š
๎ฏก
.
Case 1: ๐‘›๎ตŒ4
Figure 1: Local Antimagic Vertex Coloring of W4.
Label the edges of ๐‘Š
๎ฏก
isomorphic to the
following figure. Therefore, for a small case of ๐‘›๎ตŒ
4, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฌธ
๏ˆป
๎ตŒ3.
Case 2: ๐‘›โ‰ก0 mod 8
Label the edges ๐‘Š
๎ฏก
as follows
๐‘“
๏ˆบ
๐‘๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ
โŽฉ
โŽช
โŽช
โŽช
โŽช
โŽจ
โŽช
โŽช
โŽช
โŽช
โŽง
๐‘›๎ต†2๐‘–๎ต…10
8
๎ต…๐‘š
๏ˆบ
๐‘–,3
๏ˆป
๐‘›๎ต…4
8
,if ๐‘–โˆˆ๏‰‚1,
๐‘›
2
๎ต…1๏‰ƒ
๎ฏข
,
3๐‘› ๎ต†2๐‘–๎ต… 12
8
๎ต…๐‘š
๏ˆบ
๐‘–,0
๏ˆป
๐‘›๎ต…4
8
,if ๐‘–โˆˆ๏‰‚2,
๐‘›
2
๏‰ƒ
๎ฏ˜
,
3๐‘› ๎ต…4
4
,if ๐‘–๎ตŒ
๐‘›
2
๎ต…2,
3๐‘› ๎ต… 2๐‘–๎ต… 6
8
๎ต…๐‘š
๏ˆบ
๐‘–,3
๏ˆป
๐‘›๎ต†4
8
,if ๐‘–โˆˆ๏‰‚
๐‘›
2
๎ต…3,๐‘›๎ต†1๏‰ƒ
๎ฏข
,
5๐‘› ๎ต… 2๐‘–๎ต… 8
8
๎ต…๐‘š
๏ˆบ
๐‘–,2
๏ˆป
๐‘›๎ต†4
8
,if ๐‘–โˆˆ๏‰‚
๐‘›
2
๎ต…4,๐‘›๏‰ƒ
๎ฏ˜
.
๐‘“
๏ˆบ
๐‘ฃ
๎ฏœ
๐‘ฃ
๎ฏœ๎ฌพ๎ฌต
๏ˆป
๎ตŒ
โŽฉ
โŽช
โŽช
โŽช
โŽจ
โŽช
โŽช
โŽช
โŽง
15๐‘› ๎ต† 2๐‘– ๎ต† 2
8
๎ต…๐‘š
๏ˆบ
๐‘–,1
๏ˆป
๐‘›๎ต…4
8
,if ๐‘–โˆˆ๏‰‚1,
๐‘›
2
๎ต…3๏‰ƒ
๎ฏข
5๐‘› ๎ต… 2๐‘–
4
,if ๐‘–โˆˆ๏‰‚2,
๐‘›
2
๏‰ƒ
๎ฏ˜
7๐‘› ๎ต… 2๐‘– ๎ต… 4
8
๎ต…๐‘š
๏ˆบ
๐‘–,0
๏ˆป
๐‘›๎ต†4
8
,if ๐‘–โˆˆ๏‰‚
๐‘›
2
๎ต…2,๐‘›๎ต†2๏‰ƒ
๎ฏ˜
4๐‘›๎ต†๐‘–๎ต…1
2
,if ๐‘–โˆˆ๏‰‚
๐‘›
2
๎ต…5,๐‘›๎ต†1๏‰ƒ
๎ฏข
๐‘“
๏ˆบ
๐‘ฃ
๎ฏก
๐‘ฃ
๎ฌต
๏ˆป
๎ตŒ
5๐‘›
4
The weights of vertices are
๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ
๎ตž
27๐‘›
8
๎ต… 1, if ๐‘– is odd,
29๐‘›
8
๎ต…2, if ๐‘– is even.
๐‘ค
๏ˆบ
๐‘
๏ˆป
๎ตŒ
๐‘›
๏ˆบ
๐‘›๎ต…1
๏ˆป
2
.
It is clear that these three weights are distinct.
Therefore, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ต‘3 for ๐‘›โ‰ก0 mod 8. We
conclude that ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ตŒ3 for ๐‘›โ‰ก0 mod 8.
Case 3: ๐‘›โ‰ก4 mod 8 and ๐‘›๎ต’12
Label the edges of ๐‘Š
๎ฏก
as follows
IMC-SciMath 2019 - The International MIPAnet Conference on Science and Mathematics (IMC-SciMath)
186
๐‘“
๏ˆบ
๐‘๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ
โŽฉ
โŽช
โŽช
โŽช
โŽช
โŽช
โŽจ
โŽช
โŽช
โŽช
โŽช
โŽช
โŽง
๐‘›
2
๎ต…๐‘š
๏ˆบ
๐‘–,3
๏ˆป
๐‘›
2
,if ๐‘–โˆˆ
๏ˆพ
1,3
๏ˆฟ
๎ฏข
๐‘–๎ต…2
4
๎ต…๐‘š
๏ˆบ
๐‘–,0
๏ˆป
๐‘›
8
,if ๐‘–โˆˆ๏‰‚2,
๐‘›
2
๏‰ƒ
๎ฏ˜
2๐‘› ๎ต… 2๐‘– ๎ต† 2
8
๎ต…๐‘š
๏ˆบ
๐‘–,3
๏ˆป
๐‘›
8
,if ๐‘–โˆˆ๏‰‚5,
๐‘›
2
๎ต†1๏‰ƒ
๎ฏข
3๐‘› ๎ต… 4
8
๎ต…๐‘š
๏ˆบ
๐‘–,1
๏ˆป
๐‘›๎ต†2
2
,if ๐‘–โˆˆ๏‰‚
๐‘›
2
๎ต…1,
๐‘›
2
๎ต…3๏‰ƒ
๎ฏข
3๐‘›๎ต†๐‘–๎ต…4
4
๎ต…๐‘š
๏ˆบ
๐‘–,2
๏ˆป
๐‘›
8
,if ๐‘–โˆˆ๏‰‚
๐‘›
2
๎ต…2,๐‘›๏‰ƒ
๎ฏ˜
4๐‘›๎ต†๐‘–๎ต…1
4
๎ต…๐‘š
๏ˆบ
๐‘–,3
๏ˆป
๐‘›
8
,if ๐‘–โˆˆ๏‰‚
๐‘›
2
๎ต…5,๐‘›๎ต†1๏‰ƒ
๎ฏข
Figure 2: Local Antimagic Vertex Coloring of ๐‘Š
๎ฌผ
.
๐‘“
๏ˆบ
๐‘ฃ
๎ฏœ
๐‘ฃ
๎ฏœ๎ฌพ๎ฌต
๏ˆป
๎ตŒ
โŽฉ
โŽช
โŽช
โŽช
โŽช
โŽช
โŽจ
โŽช
โŽช
โŽช
โŽช
โŽช
โŽง
11๐‘› ๎ต… 4
8
๎ต…๐‘š
๏ˆบ
๐‘–,1
๏ˆป
5๐‘› ๎ต† 4
8
,if ๐‘–โˆˆ
๏ˆพ
1,2
๏ˆฟ
,
5๐‘›๎ต…๐‘–๎ต…1
4
๎ต…๐‘š
๏ˆบ
๐‘–,1
๏ˆป
๐‘›
8
,if ๐‘–โˆˆ๏‰‚3,
๐‘›
2
๎ต†1๏‰ƒ
๎ฏข
4๐‘›๎ต†๐‘–๎ต…2
2
,if ๐‘–โˆˆ๏‰‚4,
๐‘›
2
๎ต…2๏‰ƒ
๎ฏ˜
๐‘› ๎ต… 1, if ๐‘–๎ตŒ
๐‘›
2
๎ต…1,
5๐‘› ๎ต… 2๐‘– ๎ต† 2
4
,if ๐‘–โˆˆ๏‰‚
๐‘›
2
๎ต…3,๐‘›๎ต†1๏‰ƒ
๎ฏข
5๐‘›๎ต†๐‘–๎ต…6
4
๎ต…๐‘š
๏ˆบ
๐‘–,0
๏ˆป
๐‘›
8
,if ๐‘–โˆˆ๏‰‚
๐‘›
2
๎ต…4,๐‘›๎ต†2๏‰ƒ
๎ฏ˜
The weights of vertices are
๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ
๎ตž
29๐‘›๎ต… 12
8
,if ๐‘– is odd,
29๐‘›๎ต…12
8
๎ต†
๐‘›
4
,if ๐‘– is even.
๐‘ค
๏ˆบ
๐‘
๏ˆป
๎ตŒ
๐‘›
๏ˆบ
๐‘›๎ต…1
๏ˆป
2
.
It is clear that these three weights are distinct.
Hence, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ต‘3 for ๐‘›โ‰ก4 mod 8. We
conclude that ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ตŒ3 for ๐‘›โ‰ก4 mod 8.
Figure 3: Local Antimagic Vertex Coloring of ๐‘Š
๎ฌต๎ฌถ
.
Therefore, f is a local antimagic vertex coloring for
๐‘Š
๎ฏก
with ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
๎ตŒ3.
โˆŽ
Helm graph is acquired by attaching a pendant to
every vertices in the wheel graph except the center.
Helm graph ๐ป
๎ฏก
is formally defined with the vertex
set
๐‘‰
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ตŒ
๏ˆผ
๐‘,๐‘ฃ
๎ฏœ
,๐‘ฅ
๎ฏœ
|๐‘–โˆˆ
๏ˆพ
1,๐‘›
๏ˆฟ๏ˆฝ
and the edge set
๐ธ
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ตŒ
๏ˆผ
๐‘ฃ
๎ฏก
๐‘ฃ
๎ฌต
,๐‘๐‘ฃ
๎ฏก
,๐‘ฃ
๎ฏœ
๐‘ฃ
๎ฏœ๎ฌพ๎ฌต
,๐‘๐‘ฃ
๎ฏœ
,๐‘ฅ
๎ฏœ
๐‘ฃ
๎ฏœ
,๐‘ฅ
๎ฏก
๐‘ฃ
๎ฏก
|๐‘–
โˆˆ
๏ˆพ
1,๐‘›๎ต† 1
๏ˆฟ๏ˆฝ
We start to call vertex ๐‘ as a center, and vertices
๐‘ฅ
๎ฏœ
as pendants. In preceding theorem, we use the
chromatic number of the graph to prove the lower
bound. Next, we try to use reasoning similar with
Theorem 2 to establish the lower bound.
The center ๐‘ incident to ๐‘› number of edges. This
results the weight of center is at least the sum of
natural integers up to ๐‘›. Meanwhile, the weight of
pendants is at most 3๐‘› since pendants incident to
only one edge. Vertices other than those are incident
to four edges, the weight is at least the sum of four
smallest available labels. By having assumptions and
showing contradictions, this reasoning effectively
adjusts the lower bound to be equal to the upper
bound, giving an exact value for helm graphs.
Theorem 4. For integer ๐‘›๎ต’3, helm graphs ๐ป
๎ฏก
have
๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ตŒ๎ตœ
๐‘›๎ต…3, if ๐‘›๎ต4,
6, if ๐‘›๎ตŒ4.
Proof. From the definition, helm graph ๐ป
๎ฏก
has ๐‘›
number of pendants. Using Theorem 2 directly, we
are guaranteed to have ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ต’๐‘›๎ต…1.
Let ๐‘“ be a labeling of helm graph. We divide the
problems into cases.
Local Antimagic Vertex Coloring of Wheel Graph and Helm Graph
187
Case 1: ๐‘›๎ตŒ3,4,5
To prove the upper bound, labels the edges of ๐ป
๎ฏก
isomorphic as the following figures.
Figure 4: Local Antimagic Vertex Coloring of ๐ป
๎ฌท
, ๐ป
๎ฌธ
, and
๐ป
๎ฌน
.
Hence, we have
๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ต‘๎ตœ
6, if ๐‘›๎ตŒ3,4,
8, if ๐‘›๎ตŒ5.
Subcase 1.1: ๐‘›๎ตŒ3
Suppose ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฌท
๏ˆป
๎ต‘๐‘›๎ต…2๎ตŒ5. Then, there exists
๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
that equals ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ for some ๐‘–,๐‘—. Notice that
every ๐‘ฃ
๎ฏœ
incident to four edges, which means
๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
๎ต’1๎ต…2๎ต…3๎ต…4๎ตŒ10, if we chose smallest
labels on edges incident to ๐‘ฃ
๎ฏœ
. Meanwhile, ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ๎ต‘
9 because pendants only have one label. It
contradicts the fact the existence of ๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
that
equals ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ for some ๐‘–,๐‘—. Therefore, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฌท
๏ˆป
๎ต’
๐‘›๎ต…3๎ตŒ6. We conclude that ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฌท
๏ˆป
๎ตŒ6.
Subcase 1.2: ๐‘›๎ตŒ4
Suppose ๐œ’
๎ฏŸ๎ฏ”
๎ต‘๐‘›๎ต…1. Therefore, there exists two ๐‘ฃ
๎ฏœ
such that each one ๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
equals to ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ for some
๐‘–,๐‘—. The sum of those ๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
๎ต’
โˆ‘
๐‘–
๎ฌผ
๎ฏœ๎ญ€๎ฌต
๎ตŒ36. While
the sum of weights from pendants ๐‘ค
๏ˆบ
๐‘ฅ
๎ฏœ
๏ˆป
๎ต‘2
๏ˆบ
3๐‘›
๏ˆป
๎ตŒ
6๐‘›๎ต36. It contradicts the fact that each one ๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
equals to ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ for some ๐‘–,๐‘—. Hence, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฌธ
๏ˆป
๎ต’๐‘›๎ต…
2๎ตŒ6. We conclude that ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฌธ
๏ˆป
๎ตŒ6.
Subcase 1.3: ๐‘›๎ตŒ5.
A similar reasoning with previous case, that there is
no two ๐‘ฃ
๎ฏœ
such that each one ๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
equals to ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ
for some ๐‘–,๐‘— which means ๐œ’
๎ฏŸ๎ฏ”
๎ต’๐‘›๎ต…2. Suppose
๐œ’
๎ฏŸ๎ฏ”
๎ต‘๐‘›๎ต…2. Therefore, there exists at least one ๐‘ฃ
๎ฏœ
and center ๐‘ such that each one ๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ and
๐‘ค
๏ˆบ
๐‘
๏ˆป
๎ตŒ๐‘ค
๏ˆบ
๐‘ฅ๐‘˜
๏ˆป
for some ๐‘–,๐‘—,๐‘˜. Notice that ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ๎ต‘
15 for any ๐‘—. There is only one possibility to satisfy
๐‘ค
๏ˆบ
๐‘
๏ˆป
๎ตŒ15, by giving ๐‘๐‘ฃ
๎ฏœ
labels from 1 to 5. Hence,
we have a new least weight of ๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
๎ต’1๎ต…5๎ต…6๎ต…
7๎ตŒ19. It contradicts the fact that ๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ๎ต‘
15 for some ๐‘–,๐‘—. Therefore, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฌน
๏ˆป
๎ต’๐‘›๎ต…3. We
conclude that ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฌน
๏ˆป
๎ตŒ๐‘›๎ต…3๎ตŒ8.
Case 2: ๐‘›๎ต’6.
Suppose ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ต‘๐‘›๎ต…1. Then, ๐‘ค
๏ˆบ
๐‘
๏ˆป
will equal to
๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ for some ๐‘—. Notice that ๐‘ค
๏ˆบ
๐‘
๏ˆป
๎ต’
โˆ‘
๐‘–
๎ฏก
๎ฏœ๎ญ€๎ฌต
๎ตŒ
๎ฏก
๏ˆบ
๎ฏก๎ฌพ๎ฌต
๏ˆป
๎ฌถ
, while ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ๎ต‘3๐‘› for any ๐‘—. It is clear that
๎ฏก
๏ˆบ
๎ฏก๎ฌพ๎ฌต
๏ˆป
๎ฌถ
๎ต3๐‘›, if ๐‘›๎ต’6. Therefore, contradiction
exists so that ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ต’๐‘›๎ต…2.
Suppose ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ต‘๐‘›๎ต…2. Since ๐‘ค
๏ˆบ
๐‘
๏ˆป
is unique,
then there exists ๏‰”
๎ฏก
๎ฌถ
๏‰• number of ๐‘ฃ
๎ฏœ
such that each one
๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
equals to ๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ for some ๐‘–,๐‘—. The sum of
those at least ๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
๎ต’
โˆ‘
๐‘–
๎ฌธ๏‰”
๎ณ™
๎ฐฎ
๏‰•
๎ฏœ๎ญ€๎ฌต
๎ตŒ2๏‰”
๎ฏก
๎ฌถ
๏‰•
๏‰€
4๏‰”
๎ฏก
๎ฌถ
๏‰•๎ต…1
๏‰
.
While the sum of weights from pendants ๐‘ค
๏ˆบ
๐‘ฅ
๎ฏœ
๏ˆป
๎ต‘
๏‰”
๎ฏก
๎ฌถ
๏‰•
๏ˆบ
3๐‘›
๏ˆป
. It is not hard to prove the inequality
2๏‰”
๎ฏก
๎ฌถ
๏‰•
๏‰€
4๏‰”
๎ฏก
๎ฌถ
๏‰•๎ต…1
๏‰
๎ต๏‰”
๎ฏก
๎ฌถ
๏‰•
๏ˆบ
3๐‘›
๏ˆป
for ๐‘›๎ต’6, which
contradicts the fact that each one ๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
equals to
๐‘ค๎ตซ๐‘ฅ
๎ฏ
๎ตฏ for some ๐‘–,๐‘—. Hence, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ต’๐‘›๎ต…3.
Subcase 2.1: ๐‘›๎ต’6, ๐‘› is even.
To prove the upper bound, labels the edges of ๐ป
๎ฏก
as
follows
๐‘“
๏ˆบ
๐‘ฃ
๎ฏœ
๐‘ฃ
๎ฏœ๎ฌพ๎ฌต
๏ˆป
๎ตŒ๐‘–, if ๐‘–โˆˆ
๏ˆพ
1,๐‘›๎ต† 1
๏ˆฟ
,
๐‘“
๏ˆบ
๐‘ฃ
๎ฏก
๐‘ฃ
๎ฌต
๏ˆป
๎ตŒ๐‘›,
๐‘“
๏ˆบ
๐‘๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ2๐‘›๎ต…1๎ต†๐‘–, if ๐‘–โˆˆ
๏ˆพ
1,๐‘›
๏ˆฟ
,
๐‘“
๏ˆบ
๐‘ฅ
๎ฏœ
๐‘ฃ
๎ฏœ
๏ˆป
๎ต‘๎ตœ
2๐‘›๎ต… 2, if ๐‘–๎ตŒ1,
3๐‘›๎ต†๐‘–๎ต…1๎ต…2odd
๏ˆบ
๐‘–
๏ˆป
,if ๐‘–โˆˆ
๏ˆพ
2,๐‘›
๏ˆฟ
.
The weights of the vertices are
๐‘ค
๏ˆบ
๐‘ฅ
๎ฏœ
๏ˆป
๎ตŒ๐‘“๏ˆบ๐‘ฅ
๎ฏœ
๐‘ฃ
๎ฏœ
๏ˆป
๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ๎ตœ
5๐‘› ๎ต… 1, if ๐‘– is even,
5๐‘› ๎ต… 3, if ๐‘– is odd.
๐‘ค
๏ˆบ
๐‘
๏ˆป
๎ตŒ
๐‘›๏ˆบ3๐‘› ๎ต…1๏ˆป
2
Therefore, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ต‘๐‘›๎ต…3 for ๐‘› is even. We
conclude ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ตŒ๐‘›๎ต…3 if ๐‘› is even.
IMC-SciMath 2019 - The International MIPAnet Conference on Science and Mathematics (IMC-SciMath)
188
Figure 5: Local Antimagic Vertex Coloring of ๐ป
๎ฌป
.
Subcase 2.2: ๐‘›๎ต’6, ๐‘› is odd.
To prove the upper bound, labels the edges of ๐ป
๎ฏก
as
follows
๐‘“
๏ˆบ
๐‘ฃ
๎ฏœ
๐‘ฃ
๎ฏœ๎ฌพ๎ฌต
๏ˆป
๎ตŒ๐‘–๎ต…1, if ๐‘–โˆˆ
๏ˆพ
1,๐‘›๎ต† 1
๏ˆฟ
,
๐‘“
๏ˆบ
๐‘ฃ
๎ฏก
๐‘ฃ
๎ฌต
๏ˆป
๎ตŒ๐‘›๎ต…1,
๐‘“
๏ˆบ
๐‘๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ2๐‘›๎ต…2๎ต†๐‘–, if ๐‘–โˆˆ
๏ˆพ
1,๐‘›
๏ˆฟ
,
๐‘“
๏ˆบ
๐‘ฅ
๎ฏœ
๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ๎ต
2๐‘› ๎ต… 3, โ€ˆifโ€ˆ๐‘–๎ตŒ1,
1, if ๐‘–๎ตŒ2,
3๐‘›๎ต†๐‘–๎ต…2๎ต…2 odd
๏ˆบ
๐‘–๎ต…1
๏ˆป
,if ๐‘–โˆˆ
๏ˆพ
3,๐‘›
๏ˆฟ
.
The weights of the vertices are
๐‘ค
๏ˆบ
๐‘ฅ
๎ฏœ
๏ˆป
๎ตŒ๐‘“๏ˆบ๐‘ฅ
๎ฏœ
๐‘ฃ
๎ฏœ
๏ˆป
๐‘ค
๏ˆบ
๐‘ฃ
๎ฏœ
๏ˆป
๎ตŒ๎ต
2๐‘›๎ต… 6, โ€ˆifโ€ˆ๐‘–๎ตŒ2,
5๐‘› ๎ต… 5, if ๐‘– is even and ๐‘–๎ต2,
5๐‘›๎ต… 7, if ๐‘– is odd.
๐‘ค
๏ˆบ
๐‘
๏ˆป
๎ตŒ
๐‘›๏ˆบ3๐‘› ๎ต…3๏ˆป
2
Notice that ๐‘ค
๏ˆบ
๐‘ฃ
๎ฌถ
๏ˆป
๎ตŒ๐‘ค
๏ˆบ
๐‘ฅ
๎ฏก๎ฌฟ๎ฌธ
๏ˆป
. Hence, ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ต‘
๐‘›๎ต…3 for ๐‘› is odd. We conclude ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
๎ตŒ๐‘›๎ต…3 if
๐‘› is odd.
Since every case is covered, then the theorem
holds.
โˆŽ
Figure 6: Local Antimagic Vertex Coloring of ๐ป
๎ฌผ
.
4 CONCLUSIONS
With preceding researchs, we have completed all
exact value of ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐‘Š
๎ฏก
๏ˆป
and ๐œ’
๎ฏŸ๎ฏ”
๏ˆบ
๐ป
๎ฏก
๏ˆป
for any integer
๐‘›. Future researchers are recommended to study the
value of ๐œ’
๎ฏŸ๎ฏ”
for any other class of graphs.
REFERENCES
Arumugam, S., Lee, Y., Premalatha, K., & Wang, T.
(2018). On Local Antimagic Vertex Coloring for
Corona Products of Graphs. ArXiv:1808.04956v1.
Arumugam, S., Premalatha, K., Baca, M., & Semanicovรก-
Fenovcรญkovรก, A. (2017). Local Antimagic Vertex
Coloring of a Graph. Graphs Combin., 33, 275โ€“285.
Hartsfield, N., & Ringel, G. (1990). Pearls in Graph
Theory. Academic Press.
Haslegrave, J. (2018). Proof of a Local Antimagic
Conjecture. Discrete Mathematics and Theoretical
Computer Science, 20(1), 18.
Lau, G., Shiu, W., & Ng, H. (2018). On local antimagic
chromatic number of graphs with cut-vertices.
ArXiv:1805.04801v5.
Nazula, N. H., Slamin, S., & Dafik, D. (2018). Local
Antimagic Vertex Coloring of Unicyclic Graphs.
Indonesian Journal of Combinatorics, 2(1), 30โ€“34.
Silaban, D. R., Pangestu, A., Herawati, B. N., Sugeng, K.,
& Slamin, A. (2009). Vertex-magic total labelings of
union of generalized Petersen graphs and union of
special circulant graphs. Combin. Math. and Combin.
Comput., 71, 201โ€“207.
Local Antimagic Vertex Coloring of Wheel Graph and Helm Graph
189