Alternative Algebra for Trapezoidal Fuzzy Number and Comparison
with Various Other Algebra
Mashadi
1
and Helmi Kholida
1
1
Department of Mathematics, Universitas Riau, Pekanbaru, Indonesia
Keywords: Trapezoidal Fuzzy Number, Fully Fuzzy Linear System, Arithmetic of Fuzzy Number, Cramer Method.
Abstract: In this article will be given a new algebra for trapezoidal fuzzy number, and then the new algebra we got will
be compared with other algebra by privious outhor. Finally will be given a fully fuzzy linear system which
will be solved by author algebra and other algebra by privious outhor, will be shown the new algebra which
the outhor suggest its better.
1 INTRODUCTION
Fuzzy logic is a branch of mathematical science first
introduced by LA Zadeh, a professor from UC
Berkeley's electrical engineering, computer science
department in 1965. LA Zadeh thinks fuzzy logic can
bridge precision machine language into human
language that emphasizes meaning or significance
(Zadeh, 1965).
Many methods to solve fully fuzzy linear system,
but almost all methods of partitioning are in solution
and in partitioning each matiks partition must be of
positive or negative value (there is no mixed matrix).
In this article we will give an example of solving a
fully fuzzy linear system using the Cramer method,
with ๐‘ฅ๎ทค
๎ฏœ
๎ตŒ
det๐ด
๏ˆš
๎ฏœ
det๐ด
๏ˆš
๎ต˜
. In this case even though the
matrix ๐ด
๏ˆš
is a mixture of each ๐‘– -th element, it can still
be solved. First the fuzzy number identity value is
given so that it can be used to obtain the inverse value
of the fuzzy number so that ๐‘ฅ๎ทค
๎ฏœ
๎ตŒdet๐ด
๏ˆš
๎ฏœ
โŠ—
๎ตซdet๐ด
๏ˆš
๎ตฏ
๎ฌฟ๎ฌต
can be completed.
Previously (Vijayalakshmi, 2011) had defined
๐‘ข๎ทค
๎ฏก
๎ตŒ
๏ˆบ
๐‘š,๐‘›,๐›ผ,๐›ฝ
๏ˆป
๎ฏก
with ๐‘› is negative is
๏ˆบ
๐‘š
๎ฏก
,๐‘›
๎ฏก
,๐‘›๐‘š
๎ฏก๎ฌฟ๎ฌต
๐›ฝ,๎ต†๐‘›๐‘›
๎ฏก๎ฌฟ๎ฌต
๐›ผ
๏ˆป
in this case there is a
weakness in the symbol so that it can confuse the
reader in interpreting ๐‘› as a point on a fuzzy number
or ๐‘› as a rank in the fuzzy number. Furthermore
(Vijayalakshmi, 2011) also gives the definition ๐‘ข๎ทค
๎ฏก
๎ตŒ
๏ˆบ
๐‘š,๐‘›,๐›ผ,๐›ฝ
๏ˆป
๎ฏก
=
๏ˆบ
๐‘š
๎ฏก
,๐‘›
๎ฏก
,๐‘›๐‘š
๎ฏก๎ฌฟ๎ฌต
๐›ฝ,๎ต†๐‘›๐‘›
๎ฏก๎ฌฟ๎ฌต
๐›ผ
๏ˆป
with ๐‘› is
positive , in this case we can assume ๐‘ข๎ทค
๎ฌถ
๎ตŒ๐‘ข๎ทคโŠ—๐‘ข๎ทค
using the given multiplication formula but gives
different results when the value ๐‘›๎ตŒ2 is substituted
into ๐‘ข๎ทค
๎ฏก
.
Furthermore (Jafarian, 2016) only defines fuzzy
numbers said to be not negative if given fuzzy
numbers ๐‘ข๎ทค๎ตŒ๏ˆบ๐‘š,๐‘›,๐›ผ,๐›ฝ๏ˆป if ๐‘š๎ต†๐›ผ๎ต’0 and does not
provide a definition of fuzzy numbers said to be
positive or negative.
Finally author will compare the arithmetic that the
writer obtained with the arithmetic given by other
writers especially on the inverse value that the writer
obtained and the inverse value given (Vijayalakshmi,
2011) in solving the fully fuzzy linear system.
2 PRELIMINARIES
Some basic definitions of trapezoidal fuzzy number
set theory are reviewed (Jafarian, 2016),
(Radhakrishnan et al., 2012), (Vijayalakshmi, 2011).
A fuzzy number ๐‘ ฬƒ๎ตŒ๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ๏ˆป is said to be a
trapezoidal fuzzy numberif its membership function
is given by
๐œ‡
๎ฏฆ
ฬƒ
๏ˆบ
๐‘ฅ
๏ˆป
๎ตŒ
โŽฉ
โŽช
โŽจ
โŽช
โŽง
1๎ต†
โ„Ž ๎ต†๐‘ฅ
๐œŒ
, โ„Ž๎ต†๐œŒ๎ต‘๐‘ฅ๎ตโ„Ž
1, โ„Ž ๎ต‘๐‘ฅ๎ต๐‘˜
1๎ต†
๐‘ฅ๎ต†๐‘˜
๐œ
, ๐‘˜๎ต‘๐‘ฅ๎ต‘๐‘˜๎ต…๐œ
0, otherwise
The trapezoidal fuzzy number can be written in
the parametric form
Mashadi, . and Kholida, H.
Alternative Algebra for Trapezoidal Fuzzy Number and Comparison with Various Other Algebra.
DOI: 10.5220/0010139800002775
In Proceedings of the 1st International MIPAnet Conference on Science and Mathematics (IMC-SciMath 2019), pages 237-241
ISBN: 978-989-758-556-2
Copyright
c
๎€ 2022 by SCITEPRESS โ€“ Science and Technology Publications, Lda. All rights reserved
237
๐‘ข
๏ˆบ๐‘Ÿ๏ˆป๎ตŒโ„Ž ๎ต†
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œŒ,
๐‘ข
๏ˆบ๐‘Ÿ๏ˆป๎ตŒ๐‘˜๎ต…
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œ.
Definition 2.1. Fuzzy subset ๐‘ข๎ทค is defined with ๐‘ ฬƒ๎ตŒ
๎ตซ๐‘ฅ,๐œ‡
๎ฏฆ
ฬƒ
๏ˆบ
๐‘ฅ
๏ˆป
๎ตฏ. In pairs ๎ตซ๐‘ฅ,๐œ‡
๎ฏฆ
ฬƒ
๏ˆบ
๐‘ฅ
๏ˆป
๎ตฏ, ๐‘ฅ is a member of the
set ๐‘ ฬƒ and ๐œ‡
๎ฏฆ
ฬƒ
๏ˆบ
๐‘ฅ
๏ˆป
the value on interval [0, 1] which is
called the membership function.
Definition 2.2. Fuzzy number is a fuzzy set ๐‘ ฬƒ:โ„โ†’
๏ˆพ0,1๏ˆฟ which satisfies the following:
1. ๐‘ ฬƒ is upper semicontinuous.
2. ๐‘ ฬƒ๎ตŒ0 outside the interval ๏ˆพ
โ„Ž ๎ต†๐œŒ,๐‘˜๎ต…๐œ๏ˆฟ.
3. There exist real number ๏ˆพ
โ„Ž,๐‘˜๏ˆฟ in interval ๏ˆพโ„Ž ๎ต†
๐œŒ,๐‘˜๎ต…๐œ๏ˆฟ such that,
i. ๐‘ ฬƒ monotonic increasing in ๏ˆพ
โ„Ž ๎ต†๐œŒ,โ„Ž๏ˆฟ.
ii. ๐‘ ฬƒ monotonic decreasing in ๏ˆพ๐‘˜,๐‘˜๎ต… ๐œ๏ˆฟ.
iii. ๐‘ ฬƒ๎ตŒ1 for
โ„Ž๎ต‘๐‘ฅ๎ต‘๐‘˜.
The alternative definition of other fuzzy numbers
that are often used by authors is as follows.
Definition 2.3. Fuzzy number ๐‘ข๎ทค in โ„ is defined as a
function pair ๐‘ ฬƒ๎ตŒ๎ตฃ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตง which satisfy the
following:
1. ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
is a bounded left continuous non decreasing
function over ๏ˆพ0,1๏ˆฟ.
2. ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
is a bounded right continuous non increasing
function over ๏ˆพ0,1๏ˆฟ.
3. ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๎ต‘๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
,0๎ต‘๐‘Ÿ๎ต‘1.
Definition 2.4. A trapezoidal fuzzy number ๐‘ ฬƒ๎ตŒ
๏ˆบโ„Ž,๐‘˜,๐œŒ,๐œ๏ˆป is said to be zero trapezoidal fuzzy number
if and only if โ„Ž๎ตŒ0,๐‘˜๎ตŒ0,๐œŒ๎ตŒ0 and ๐œ๎ตŒ0.
Definition 2.5. Two fuzzy number ๐‘ ฬƒ๎ตŒ๏ˆบโ„Ž,๐‘˜,๐œŒ,๐œ๏ˆป
and ๐‘ก
ฬƒ
๎ตŒ๏ˆบ๐‘,๐‘ž,๐œŽ,๐œ”๏ˆป are said to be equal if and only if
โ„Ž๎ตŒ๐‘,๐‘˜๎ตŒ๐‘ž and are said pure same if and only if
โ„Ž๎ตŒ๐‘,๐‘˜๎ตŒ๐‘ž,๐œŒ๎ตŒ๐œŽ,๐œ๎ตŒ๐œ”.
Here's the algebra that other author give:
Definition 2.6. Given ๐‘ ฬƒ๎ตŒ
๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ
๏ˆป
๎ตŒ๎ตซ๐‘ 
,๐‘ ๎ตฏ๎ตŒ
๏ˆบ
โ„Ž๎ต†
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œŒ,๐‘˜๎ต…
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œ
๏ˆป
, ๐‘ก
ฬƒ
๎ตŒ
๏ˆบ
๐‘,๐‘ž,๐œŽ,๐œ”
๏ˆป
๎ตŒ
๎ตซ๐‘ก
,๐‘ก๎ตฏ๎ตŒ
๏ˆบ
๐‘๎ต†
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œŽ,๐‘ž ๎ต…
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œ”
๏ˆป
and ๐‘› is real
a. Addition
๐‘ ฬƒ๎ต…๐‘ก
ฬƒ
๎ตŒ๎ตซ๐‘ ๎ต…๐‘ก
,๐‘  ๎ต…๐‘ก ๎ตฏ
๐‘ ฬƒ๎ต…๐‘ก
ฬƒ
๎ตŒ
๏ˆบ
โ„Ž ๎ต… ๐‘ ,๐‘˜๎ต… ๐‘ž ,๐œŒ ๎ต… ๐œŽ ,๐œ๎ต… ๐œ”
๏ˆป
b. Subtraction
๐‘ ฬƒ๎ต†๐‘ก
ฬƒ
๎ตŒ๎ตซ๐‘ 
๎ต†๐‘ก ,๐‘  ๎ต†๐‘ก๎ตฏ
๐‘ ฬƒ๎ต†๐‘ก
ฬƒ
๎ตŒ
๏ˆบ
โ„Ž๎ต†๐‘ž ,๐‘˜๎ต†๐‘,๐œŒ๎ต…๐œ” ,๐œ๎ต…๐œŽ
๏ˆป
c. Negative number
๎ต†๐‘ ฬƒ๎ตŒ
๏ˆบ
๎ต†๐‘˜,๎ต†โ„Ž,๐œ,๐œŒ
๏ˆป
d. Scalar multiplication
๐‘›โŠ—๐‘ ฬƒ๎ตŒ๐‘˜โŠ—
๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ
๏ˆป
๎ตŒ๎ตœ
๏ˆบ
๐‘›โ„Ž,๐‘›๐‘˜,๐‘›๐œŒ,๐‘›๐œ
๏ˆป
, ๐‘›๎ต’0
๏ˆบ
๐‘›๐‘˜,๐‘›โ„Ž,๎ต†๐‘›๐œ,๎ต†๐‘›๐œŒ
๏ˆป
, ๐‘›๎ต0
e. Multiplication
If ๐‘ ฬƒ๎ต’0 and ๐‘ก
ฬƒ
๎ต’0, so
๐‘ ฬƒโŠ—๐‘ก
ฬƒ
๎ตŒ๎ตซโ„Ž๐‘,๐‘˜๐‘ž,
๏ˆบ
โ„Ž๐œŽ ๎ต… ๐‘๐œŒ
๏ˆป
,
๏ˆบ
๐‘˜๐œ” ๎ต…๐‘ž๐œ
๏ˆป
๎ตฏ
In this case (Jafarian, 2016) and (Vijayalakshmi,
2011) do not provide alternative algebra for other
fuzzy numbers such as multiplication of positive
fuzzy numbers - negative fuzzy numbers, negative
fuzzy numbers - positive fuzzy numbers and negative
fuzzy numbers - negative fuzzy numbers. And didnt
give definition of fuzzy numbers said to be positive
or fuzzy numbers said to be negative.
3 ALGEBRA OF FUZZY
NUMBER
Fuzzy numbers that are said to be positive fuzzy or
negative fuzzy by determining the area of the x-axis,
then we will be given the identity of fuzzy numbers,
inverse fuzzy numbers and alternative divisions of
fuzzy numbers.
3.1 Positive and Negative Fuzzy Number
Definition 3.1. The fuzzy number ๐‘ข๎ทค is said to be
positive (negative) fuzzy denoted ๐‘ ฬƒ๎ต’0,
๏ˆบ
๐‘ ฬƒ๎ต0
๏ˆป
by
using the area rules in the x-axis, that is:
1. If the fuzzy region is exactly one of the ๐‘ฅ -axes
then fuzzy ๐‘ ฬƒ is said to be positive (negative) if โ„Ž๎ต†
๐œŒ๎ต’0
๏ˆบ
๐‘˜๎ต†๐œ๎ต0
๏ˆป
.
2. If the fuzzy region is both of the ๐‘ฅ -axes so:
a. If โ„Ž๎ต0, ๐‘˜๎ต‘0 and ๐‘˜๎ต… ๐œ๎ต’0 ๐‘ ฬƒ said positive
fuzzy number is โ„Ž๎ต…๐‘˜๎ต…
๎ฐ›
๎ฌถ
๎ต†
๎ฐ˜
๎ฌถ
๎ต…
๎ฏž
๎ฐฎ
๎ฐ›
๎ต’0, and
๐‘ ฬƒ said to be negative fuzzy number is โ„Ž๎ต…๐‘˜๎ต…
๎ฐ›
๎ฌถ
๎ต†
๎ฐ˜
๎ฌถ
๎ต…
๎ฏž
๎ฐฎ
๎ฐ›
๎ต0.
b. If โ„Ž๎ต0 and ๐‘˜๎ต0 ๐‘ ฬƒ said positive fuzzy
number is ๐‘˜๎ต…โ„Ž๎ต†
๎ฐ˜
๎ฌถ
๎ต…
๎ฐ›
๎ฌถ
๎ต’0, and ๐‘ ฬƒ said to be
negative fuzzy number is ๐‘˜๎ต…โ„Ž๎ต†
๎ฐ˜
๎ฌถ
๎ต…
๎ฐ›
๎ฌถ
๎ต0.
c. If โ„Ž๎ต’0 and ๐‘˜๎ต0, ๐‘ ฬƒ said positive fuzzy
number is ๐‘˜๎ต…โ„Ž๎ต…
๎ฐ›
๎ฌถ
๎ต†
๎ฐ˜
๎ฌถ
๎ต†
๎ฏ›
๎ฐฎ
๎ฐ˜
๎ต’0, and ๐‘ข๎ทค said
to be negative fuzzy number is ๐‘˜๎ต…โ„Ž๎ต…
๎ฐ›
๎ฌถ
๎ต†
๎ฐ˜
๎ฌถ
๎ต†
๎ฏ›
๎ฐฎ
๎ฐ˜
๎ต0.
3.2 Arithmetic Trapezoidal Fuzzy Number
Given ๐‘ ฬƒ๎ตŒ
๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ
๏ˆป
with parametric function such
as:
๐‘ ฬƒ๎ตŒ๎ตซ๐‘ 
๏ˆบ๐‘Ÿ๏ˆป,๐‘ ๏ˆบ๐‘Ÿ๏ˆป๎ตฏ๎ตŒ
๏ˆบ
โ„Ž๎ต†
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œŒ,๐‘˜๎ต…
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œ
๏ˆป
,
IMC-SciMath 2019 - The International MIPAnet Conference on Science and Mathematics (IMC-SciMath)
238
and
๐‘ก
ฬƒ
๎ตŒ๎ตซ๐‘ก
๏ˆบ๐‘Ÿ๏ˆป,๐‘ก๏ˆบ๐‘Ÿ๏ˆป๎ตฏ๎ตŒ
๏ˆบ
๐‘๎ต†
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œŽ,๐‘ž ๎ต…
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œ”
๏ˆป
.
Theorem 3.1. If ๐‘ ฬƒ๎ตŒ๎ตฃ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตง and ๐‘ก
ฬƒ
๎ตŒ๎ตฃ๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตง
is two positive trapezoidal fuzzy number so ๐‘ค๎ทฅ๎ตŒ๐‘ ฬƒโŠ—
๐‘ก
ฬƒ
๎ตŒ
๏‰€
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๏‰
with
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตŒ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
๎ต…๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
๎ต†๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
,
For ๐‘Ÿโˆˆ
๏ˆพ
0,1
๏ˆฟ
is a positive trapezoidal fuzzy
number.
Based on theorem 1, for two trapezoidal fuzzy
number ๐‘ ฬƒ๎ตŒ๎ตฃ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตง and ๐‘ก
ฬƒ
๎ตŒ๎ตฃ๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตง
following this conditions:
i. If ๐‘ ฬƒ positive and ๐‘ก
ฬƒ
negative, so ๐‘ค๎ทฅ๎ตŒ๎ต†๎ตซ๐‘ ฬƒโŠ—
๏ˆบ
๎ต†๐‘ก
ฬƒ
๏ˆป
๎ตฏ
negative,
ii. If ๐‘ ฬƒ negative and ๐‘ก
ฬƒ
positive, so ๐‘ค๎ทฅ๎ตŒ๎ต†๎ตซ
๏ˆบ
๎ต†๐‘ ฬƒ
๏ˆป
โŠ—๐‘ก
ฬƒ
๎ตฏ
negative,
iii. If ๐‘ ฬƒ negative and ๐‘ก
ฬƒ
negative, so ๐‘ค๎ทฅ๎ตŒ๎ตซ
๏ˆบ
๎ต†๐‘ ฬƒ
๏ˆป
โŠ—
๏ˆบ
๎ต†๐‘ก
ฬƒ
๏ˆป
๎ตฏ positive.
Based on theorem 1 and multiplication (i-iii), so
multiplication on two trapezoidal fuzzy number ๐‘ ฬƒ๎ตŒ
๎ตฃ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตง and ๐‘ก
ฬƒ
๎ตŒ๎ตฃ๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตง and ๐‘Ÿ โˆˆ
๏ˆพ
0,1
๏ˆฟ
obtained:
i. If ๐‘ข๎ทค positive and ๐‘ฃ๎ทค negative, s
๐‘ค๎ทฅ๎ตŒ๏‰Š
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตŒ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
๎ต…๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
๎ต†๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตŒ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
๎ต…๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
๎ต†๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
ii. If ๐‘ข๎ทค negative and ๐‘ฃ๎ทค positive, so
๐‘ค๎ทฅ๎ตŒ๏‰Š
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตŒ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
๎ต…๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
๎ต†๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตŒ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
๎ต…๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
๎ต†๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
iii. If ๐‘ข๎ทค negative and ๐‘ฃ๎ทค negative, so
๐‘ค๎ทฅ๎ตŒ๏‰Š
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตŒ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
๎ต…๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
๎ต†๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตŒ๐‘ 
๏ˆบ
๐‘Ÿ
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
๎ต…๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
๐‘Ÿ
๏ˆป
๎ต†๐‘ 
๏ˆบ
1
๏ˆป
๐‘ก
๏ˆบ
1
๏ˆป
By following the description we get the fuzzy
number multiplication formula as follows:
a. Multiplication of Fuzzy
I. If ๐‘ ฬƒ๎ต0 and ๐‘ก
ฬƒ
๎ต0 so:
๐‘ค๎ทฅ๎ตŒ
๏‰€
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๏‰
,
๐‘ค๎ทฅ๎ตŒ๎ตซโ„Ž๐‘,๐‘˜๐‘ž,
๏ˆบ
โ„Ž๐œŽ ๎ต… ๐‘๐œŒ
๏ˆป
,
๏ˆบ
๐‘˜๐œ”๎ต… ๐‘ž๐œ
๏ˆป
๎ตฏ
II. If ๐‘ ฬƒ๎ต0 and ๐‘ก
ฬƒ
๎ต0 so:
๐‘ค๎ทฅ๎ตŒ
๏‰€
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๏‰
,
๐‘ค๎ทฅ๎ตŒ๎ตซ๐‘˜๐‘,โ„Ž๐‘ž,
๏ˆบ
๐‘˜๐œŽ๎ต† ๐‘๐œ
๏ˆป
,
๏ˆบ
โ„Ž๐œ” ๎ต† ๐‘ž๐œŒ
๏ˆป
๎ตฏ
III. If ๐‘ ฬƒ๎ต0 and ๐‘ก
ฬƒ
๎ต0 so:
๐‘ค๎ทฅ๎ตŒ
๏‰€
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๏‰
,
๐‘ค๎ทฅ๎ตŒ๎ตซโ„Ž๐‘ž,๐‘˜๐‘,
๏ˆบ
๐‘ž๐œŒ ๎ต† โ„Ž๐œ”
๏ˆป
,
๏ˆบ
๐‘๐œ ๎ต†๐‘˜๐œŽ
๏ˆป
๎ตฏ
IV. If ๐‘ ฬƒ๎ต0 and ๐‘ก
ฬƒ
๎ต0 so:
๐‘ค๎ทฅ๎ตŒ
๏‰€
๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ค
๏ˆบ
๐‘Ÿ
๏ˆป
๏‰
,
๐‘ค๎ทฅ๎ตŒ๎ตซ๐‘˜๐‘ž,โ„Ž๐‘,๎ต†
๏ˆบ
๐‘ž๐œ ๎ต… ๐‘˜๐œ”
๏ˆป
,๎ต†
๏ˆบ
โ„Ž๐œŽ ๎ต… ๐‘๐œŒ
๏ˆป
๎ตฏ
b. Fuzzy Number Identity
Given ๐‘ ฬƒ๎ตŒ
๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ
๏ˆป
and ๐ผ
๏ˆš
๎ตŒ๏ˆบ๐‘,๐‘ž,๐œŽ,๐œ”๏ˆป, so ๐ผ
๏ˆš
said
to be identity if
๐‘ ฬƒโŠ—๐ผ
๏ˆš
๎ตŒ๐‘ ฬƒ
๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ
๏ˆป
โŠ—
๏ˆบ
๐‘,๐‘ž,๐œŽ,๐œ”
๏ˆป
๎ตŒ
๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ
๏ˆป
๏ˆบ
โ„Ž๐‘,๐‘˜๐‘ž,โ„Ž๐œŽ ๎ต… ๐‘๐œŒ,๐‘˜๐œ”๎ต… ๐‘ž๐œ
๏ˆป
๎ตŒ
๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ
๏ˆป
and
โ„Ž๐‘๎ตŒโ„Ž ๐‘˜๐‘ž๎ตŒ๐‘˜
๐‘๎ตŒ1 ๐‘ž๎ตŒ1
โ„Ž๐œŽ ๎ต… ๐‘๐œŒ๎ตŒ๐œŒ ๐‘˜๐œ” ๎ต…๐‘ž๐œ๎ตŒ๐œ
โ„Ž๐œŽ ๎ต… ๐œŒ๎ตŒ๐œŒ ๐‘˜๐œ” ๎ต…๐œ๎ตŒ๐œ
โ„Ž๐œŽ๎ตŒ0 ๐‘˜๐œ”๎ตŒ0
๐œŽ๎ตŒ0 ๐‘–๐‘“ โ„Ž๎ต0 ๐œ”๎ตŒ0 ๐‘–๐‘“ ๐‘˜๎ต0
So obtained ๐šคฬƒ
๎ฏ 
๎ตŒ๏ˆบ1,1,0,0๏ˆป is called pure identity, but
it will be difficult to obtain it so given ๐šคฬƒ๎ตŒ๏ˆบ1,1,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป
is called identity.
c. Invers of Fuzzy
Given ๐‘ ฬƒ๎ตŒ๏ˆบโ„Ž,๐‘˜,๐œŒ,๐œ๏ˆป and ๐‘ฃ๎ทค๎ตŒ๏ˆบ๐‘,๐‘ž,๐œŽ,๐œ”๏ˆป, so ๐‘ก
ฬƒ
said
to be inverse of ๐‘ ฬƒ if ๐‘ ฬƒโŠ—๐‘ก
ฬƒ
๎ตŒ
๏ˆบ
1,1,0,0
๏ˆป
with ๐šคฬƒ
๎ฏ 
๎ตŒ
๏ˆบ1,1,0,0๏ˆป.
๐‘ ฬƒโŠ—๐‘ก
ฬƒ
๎ตŒ
๏ˆบ
1,1,0,0
๏ˆป
๏ˆบโ„Ž,๐‘˜,๐œŒ,๐œ๏ˆป โŠ—๏ˆบ๐‘,๐‘ž,๐œŽ,๐œ”๏ˆป๎ตŒ
๏ˆบ
1,1,0,0
๏ˆป
๏ˆบ
โ„Ž๐‘,๐‘˜๐‘ž,โ„Ž๐œŽ ๎ต… ๐‘๐œŒ,๐‘˜๐œ”๎ต… ๐‘ž๐œ
๏ˆป
๎ตŒ๏ˆบ1,1,0,0๏ˆป
So obtained
โ„Ž๐‘๎ตŒ1 ๐‘˜๐‘ž๎ตŒ1
๐‘๎ตŒ
1
โ„Ž
๎ต—
๐‘ž๎ตŒ
1
๐‘˜
๎ต—
โ„Ž๐œŽ ๎ต… ๐‘๐œŒ๎ตŒ0 ๐‘˜๐œ”๎ต… ๐‘ž๐œ๎ตŒ0
๐œŽ๎ตŒ
๎ต†๐œŒ
โ„Ž
๎ฌถ
๎ต—
๐œ”๎ตŒ
๎ต†๐œ
๐‘˜
๎ฌถ
๎ต—
๐‘ก
ฬƒ
๎ตŒ
1
๐‘ ฬƒ
๎ตŒ๎ตฌ
1
โ„Ž
,
1
๐‘˜
,
๎ต†๐œŒ
โ„Ž
๎ฌถ
,
๎ต†๐œ
๐‘˜
๎ฌถ
๎ตฐ
Alternative Algebra for Trapezoidal Fuzzy Number and Comparison with Various Other Algebra
239
d. Division of Fuzzy
Given ๐‘ ฬƒ๎ตŒ
๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ
๏ˆป
and ๐‘ก
ฬƒ
๎ตŒ๏ˆบ๐‘,๐‘ž,๐œŽ,๐œ”๏ˆป,so
๐‘ข๎ทค
๐‘ฃ๎ทค
๎ตŒ
๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ
๏ˆป
๏ˆบ๐‘,๐‘ž,๐œŽ,๐œ”๏ˆป
๎ตŒ
โŽฉ
โŽช
โŽช
โŽช
โŽจ
โŽช
โŽช
โŽช
โŽง
๎ตฌ
โ„Ž
๐‘
,
๐‘˜
๐‘ž
,
๎ต†โ„Ž๐œŽ ๎ต… ๐‘๐œŒ
๐‘
๎ฌถ
,
๎ต†๐‘˜๐œ” ๎ต… ๐‘ž๐›ฝ
๐‘ž
๎ฌถ
๎ตฐ,๐‘ ฬƒ๎ต0 and ๐‘ก
ฬƒ
๎ต0
๎ตฌ
๐‘˜
๐‘ž
,
โ„Ž
๐‘
,
๎ต†๐‘˜๐œŽ ๎ต†๐‘๐œ
๐‘ž
๎ฌถ
,
๎ต†โ„Ž๐œ” ๎ต† ๐‘ž๐œŒ
๐‘ž
๎ฌถ
๎ตฐ,๐‘ ฬƒ๎ต0 and ๐‘ก
ฬƒ
๎ต0
๎ตฌ
โ„Ž
๐‘ž
,
๐‘˜
๐‘
,
๐‘ž๐œŒ ๎ต… โ„Ž๐œ”
๐‘ž
๎ฌถ
,
๐‘๐œ ๎ต…๐‘˜๐œŽ
๐‘
๎ฌถ
๎ตฐ,๐‘ ฬƒ๎ต0 and ๐‘ก
ฬƒ
๎ต0
๎ตฌ
๐‘˜
๐‘ž
,
โ„Ž
๐‘
,
๐‘˜๐œ” ๎ต†๐‘ž๐œ
๐‘ž
๎ฌถ
,
โ„Ž๐œŽ ๎ต† ๐‘๐œŒ
๐‘
๎ฌถ
๎ตฐ,๐‘ ฬƒ๎ต0 and ๐‘ก
ฬƒ
๎ต0
Furthermore, the inverse value that the writer
obtained will be compared with the inverse value by
Vijayalakshmi. Vijayalakshmi (2011), defines
๐‘ ฬƒ
๎ฏก
๎ตŒ
๏ˆบ
โ„Ž,๐‘˜,๐œŒ,๐œ
๏ˆป
๎ฏก
๎ตŒ๎ตœ
๏ˆบ
โ„Ž
๎ฏก
,๐‘˜
๎ฏก
,๐‘›โ„Ž
๎ฏก๎ฌฟ๎ฌต
๐œ,๎ต†๐‘›๐‘˜
๎ฏก๎ฌฟ๎ฌต
๐œŒ
๏ˆป
for positive ๐‘›
๏ˆบ
โ„Ž
๎ฏก
,๐‘˜
๎ฏก
,๎ต†๐‘›โ„Ž
๎ฏก๎ฌฟ๎ฌต
๐œ,๎ต†๐‘›๐‘˜
๎ฏก๎ฌฟ๎ฌต
๐œŒ
๏ˆป
for negative ๐‘›
From the equation given by Vijayalakshmi an inverse
value was obtained
๐‘ ฬƒ
๎ฌฟ๎ฌต
๎ตŒ๎ตฌ
1
โ„Ž
,
1
๐‘˜
,
๐œ
โ„Ž
๎ฌถ
,
๐œŒ
๐‘˜
๎ฌถ
๎ตฐ.
Given ๐‘ ฬƒ๎ตŒ๏ˆบโ„Ž,๐‘˜,๐œŒ,๐œ๏ˆป will be show that ๐‘ ฬƒโŠ—๐‘ ฬƒ
๎ฌฟ๎ฌต
๎ตŒ๐ผ
๏ˆš
.
a) Using the inverse value given by Vijayalakshmi
. ๐‘ ฬƒโŠ—๐‘ ฬƒ
๎ฌฟ๎ฌต
๎ตŒ๏ˆบโ„Ž,๐‘˜,๐œŒ,๐œ๏ˆปโŠ—
๏‰€
๎ฌต
๎ฏ›
,
๎ฌต
๎ฏž
,
๎ฐ›
๎ฏ›
๎ฐฎ
,
๎ฐ˜
๎ฏž
๎ฐฎ
๏‰
๎ตŒ๏‰†โ„Ž๎ตฌ
1
โ„Ž
๎ตฐ,๐‘˜๎ตฌ
1
๐‘˜
๎ตฐ,โ„Ž
๏‰€
๐œ
โ„Ž
๎ฌถ
๏‰
๎ต…๐œŒ๎ตฌ
1
โ„Ž
๎ตฐ,๐‘˜
๏‰€
๐œŒ
๐‘˜
๎ฌถ
๏‰
๎ต…๐œ๎ตฌ
1
๐‘˜
๎ตฐ๏‰‡
๎ตŒ๎ตฌ1,1,
๐œ๎ต…๐œŒ
โ„Ž
,
๐œŒ๎ต…๐œ
๐‘˜
๎ตฐ๎ต
๏ˆบ
1,1,0,0
๏ˆป
๎ตŒ๐šคฬƒ
๎ฏ 
b) Using the inverse value that the author obtained
๐‘ ฬƒโŠ—๐‘ ฬƒ
๎ฌฟ๎ฌต
๎ตŒ๏ˆบโ„Ž,๐‘˜,๐œŒ,๐œ๏ˆปโŠ—๎ตฌ
1
โ„Ž
,
1
๐‘˜
,
๎ต†๐œŒ
โ„Ž
๎ฌถ
,
๎ต†๐œ
๐‘˜
๎ฌถ
๎ตฐ
๎ตŒ
๏‰†
โ„Ž๎ตฌ
1
โ„Ž
๎ตฐ,๐‘˜๎ตฌ
1
๐‘˜
๎ตฐ,โ„Ž
๏‰€
๎ต†๐œŒ
โ„Ž
๎ฌถ
๏‰
๎ต…
1
โ„Ž
๏ˆบ
๐œŒ
๏ˆป
,๐‘˜
๏‰€
๎ต†๐œ
๐‘˜
๎ฌถ
๏‰
๎ต…
1
๐‘˜
๏ˆบ
๐œ
๏ˆป
๏‰‡
๎ตŒ
๏ˆบ
1,1,0,0
๏ˆป
๎ตŒ๐šคฬƒ
๎ฏ 
As an illustration given an example of the following
fully fuzzy linear equation, then it will be solved
using the Cramer method. And the end will be using
two of inverse that author sugest and invers from
Vijayalakshmi.
๏ˆบ
1,2,3,5
๏ˆป
๐‘ฅ๎ทค
๎ฌต
๎ต…
๏ˆบ
2,3,4,5
๏ˆป
๐‘ฅ๎ทค
๎ฌถ
๎ตŒ๏ˆบ7,26,37,88๏ˆป
๏ˆบ
1,3,4,5
๏ˆป
๐‘ฅ๎ทค
๎ฌต
๎ต…
๏ˆบ
2,4,6,7
๏ˆป
๐‘ฅ๎ทค
๎ฌถ
๎ตŒ๏ˆบ7,36,44,115๏ˆป
The equation can be changed in the form of a matrix
as follows
๐ด
๏ˆš
โŠ—๐‘ฅ๎ทค๎ตŒ๐‘
๎ทจ
๎ตค
๏ˆบ
1,2,3,5
๏ˆป๏ˆบ
2,3,4,5
๏ˆป
๏ˆบ
1,3,4,5
๏ˆป๏ˆบ
2,4,6,7
๏ˆป
๎ตจโŠ—๏‰‚
๐‘ฅ
๎ฌต
,๐‘ฆ
๎ฌต
,๐œŒ
๎ฌต
,๐œ
๎ฌต
๐‘ฅ
๎ฌถ
,๐‘ฆ
๎ฌถ
,๐œŒ
๎ฌถ
,๐œ
๎ฌถ
๏‰ƒ
๎ตŒ๎ตค
๏ˆบ7,26,37,88๏ˆป
๏ˆบ7,36,44,115๏ˆป
๎ตจ
Obtained
det๐ด
๏ˆš
๎ตŒ
๏ˆบ
๎ต†7,6,42,46
๏ˆป
๐ด
๏ˆš
๏ˆบ
๎ฌต
๏ˆป
๎ตŒ๎ตค
๏ˆบ
7,26,37,88
๏ˆป๏ˆบ
2,3,4,5
๏ˆป
๏ˆบ
7,36,44,115
๏ˆป๏ˆบ
2,4,6,7
๏ˆป
๎ตจ
det๐ด
๏ˆš
๏ˆบ
๎ฌต
๏ˆป
๎ตŒ
๏ˆบ
๎ต†94,90,641,650
๏ˆป
๐ด
๏ˆš
๏ˆบ
๎ฌถ
๏ˆป
๎ตŒ๎ตค
๏ˆบ
1,2,3,5
๏ˆป๏ˆบ
7,26,37,88
๏ˆป
๏ˆบ
1,3,4,5
๏ˆป๏ˆบ
7,36,44,115
๏ˆป
๎ตจ
det๐ด
๏ˆš
๏ˆบ
๎ฌถ
๏ˆป
๎ตŒ
๏ˆบ
๎ต†71,65,459,475
๏ˆป
Will be solve with two of inverse value such as:
a) Using the inverse value that the author obtained
๐‘ฅ๎ทค
๎ฌต
๎ตŒ
det๐ด
๏ˆš
๏ˆบ
๎ฌต
๏ˆป
det๐ด
๏ˆš
๎ตŒdet๐ด
๏ˆš
๏ˆบ
๎ฌต
๏ˆป
โŠ—๎ตซdet๐ด
๏ˆš
๎ตฏ
๎ฌฟ๎ฌต
๎ตŒ
๏ˆบ
๎ต†94,90,641,650
๏ˆป
โŠ—๎ตฌ
๎ต†1
7
,
1
6
,
๎ต†42
49
,
๎ต†46
36
๎ตฐ
๎ตŒ
๏ˆบ
13.43,15,๎ต†11,๎ต†6.67
๏ˆป
๐‘ฅ๎ทค
๎ฌถ
๎ตŒ
det๐ด
๏ˆš
๏ˆบ
๎ฌถ
๏ˆป
det๐ด
๏ˆš
๎ตŒdet๐ด
๏ˆš
๏ˆบ
๎ฌถ
๏ˆป
โŠ—๎ตซdet๐ด
๏ˆš
๎ตฏ
๎ฌฟ๎ฌต
๎ตŒ
๏ˆบ
๎ต†71,65,459,475
๏ˆป
โŠ—๎ตฌ
๎ต†1
7
,
1
6
,
๎ต†42
49
,
๎ต†46
36
๎ตฐ
๎ตŒ
๏ˆบ
10.14,10.83,๎ต†4.71,๎ต†3.89
๏ˆป
๐‘ฅ๎ทค๎ตŒ๎ตค
๏ˆบ
13.43,15,๎ต†11,๎ต†6.67
๏ˆป
๏ˆบ
10.14,10.83,๎ต†4.71,๎ต†3.89
๏ˆป
๎ตจ
b) Using the inverse value given by Vijayalakshmi
๐‘ฅ๎ทค
๎ฌต
๎ตŒ
det๐ด
๏ˆš
๏ˆบ
๎ฌต
๏ˆป
det๐ด
๏ˆš
๎ตŒdet๐ด
๏ˆš
๏ˆบ
๎ฌต
๏ˆป
โŠ—๎ตซdet๐ด
๏ˆš
๎ตฏ
๎ฌฟ๎ฌต
๎ตŒ
๏ˆบ
๎ต†94,90,641,650
๏ˆป
โŠ—๎ตฌ
๎ต†1
7
,
1
6
,
46
49
,
42
36
๎ตฐ
๎ตŒ
๏ˆบ
13.43,15,๎ต†179.82,213.33
๏ˆป
๐‘ฅ๎ทค
๎ฌถ
๎ตŒ
det๐ด
๏ˆš
๏ˆบ
๎ฌถ
๏ˆป
det๐ด
๏ˆš
๎ตŒdet๐ด
๏ˆš
๏ˆบ
๎ฌถ
๏ˆป
โŠ—๎ตซdet๐ด
๏ˆš
๎ตฏ
๎ฌฟ๎ฌต
๎ตŒ
๏ˆบ
๎ต†71,65,459,475
๏ˆป
โŠ—๎ตฌ
๎ต†1
7
,
1
6
,
46
49
,
42
36
๎ตฐ
๎ตŒ
๏ˆบ
10.14,10.83,๎ต†132.22,155
๏ˆป
๐‘ฅ๎ทค๎ตŒ๎ตค
๏ˆบ
13.43,15,๎ต†179.82,213.33
๏ˆป
๏ˆบ
10.14,10.83,๎ต†132.22,155
๏ˆป
๎ตจ
From the two solutions above it can be seen that the
center values of a and b are the same, but the inverse
value that the author obtained provides smaller right
and left area.
IMC-SciMath 2019 - The International MIPAnet Conference on Science and Mathematics (IMC-SciMath)
240
4 CONCLUSIONS
From the previous explanation it can be concluded
that the element of identity must be distinguished
between pure identity
๏ˆบ
1,1,0,0
๏ˆป
with identity
๏ˆบ1,1,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป as well as for the similarity of fuzzy
numbers. Furthermore, by defining the positivity
and negativity of fuzzy numbers in multiplication
cases will give a better result.
REFERENCES
Jafarian, A. (2016). New decomposition method for solving
dual fully fuzzy linear system. International Journal
Fuzzy Computation and Modelling, 2, 76โ€“85.
Radhakrishnan, S., Sattanathan, R., & Gajivaradhan, P.
(2012). LU decomposition method for solving fully
fuzzy linear system with trapezoidal fuzzy numbers.
Bonfring International Journal of Man Machine
Interface, 2, 1โ€“3.
Vijayalakshmi, V. (2011). ST decomposition method for
solving fully fuzzy linear system using Gauss-Jordan
for trapezoidal fuzzy matrices. International
Mathematical Forum, 6, 2245โ€“2254.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control,
8, 338โ€“353.
Alternative Algebra for Trapezoidal Fuzzy Number and Comparison with Various Other Algebra
241