New Alternative for Arithmetics Fuzzy Number
Mashadi
1
, Ahmad Syaiful Abidin
1
and Desi Ratna Anta Sari
1
1
Department of Mathematics, Universitas Riau, Pekanbaru, Indonesia
Keywords: Fuzzy Number, Fuzzy Matrix, Fuzzy Matrix Determinant, Inverse.
Abstract: We will discuss about inverse of fuzzy matrix whose elements are fuzzy trapezoidal numbers. The
discussion was prioritized from determining the new concept of positive and negative fuzzy numbers,
namely by using the concept of broad positive areas. Based on the concept, there will be an alternative for
multiplication concept will be discussed inverse fuzzy number matrix so that used directly to solve linear
equation system of fully fuzzy trapezoidal.
1 INTRODUCTION
The famous introducer of the concept of fuzzy
numbers in the world is (Zadeh, 1965) which
explains the fuzzy set. Fuzzy numbers that are often
discussed by researchers are fuzzy trapezoidal
numbers which have some basic arithmetic between
addition, subtraction, multiplication, inverse of
numbers and divisions, and determinants and
inverses of fuzzy matrices.
Some writers who have discussed about
trapezoidal fuzzy numbers include (Kumar et al.,
2010) applies a new method to the fuzzy trapezoidal
number named the Mehar method, (Nasheri &
Gholami, 2011) which resolves linear systems of
fuzzy trapezoidal numbers, (Gemawati et al., 2018)
gave a new algebra using the QR decomposition
method on fuzzy trapezoidal numbers, then solved
the linear equation system on trapezoidal fuzzy
numbers with iterative solutions.
Some authors besides discussing the solution of
fully fuzzy linear system, many of them also discuss
the new arithmetic and new definitions in
determining positive and negative fuzzy numbers
offered in solving problems in fuzzy numbers
including (Sari & Mashadi, 2019) and (Deswita &
Mashadi, 2019) provide new definitions in
determining positive and negative fuzzy numbers
with broad concepts in triangular fuzzy numbers,
(Kholida & Mashadi, 2019) and (Safitri & Mashadi,
2019) also provide new definitions with broad
concepts in determining positive and negative fuzzy
numbers but trapezoidal fuzzy numbers.
On the other hand some authors have discussed
the inverse fuzzy numbers and the inverse fuzzy
matrix inverse, namely (Sari & Mashadi, 2019)
which provides a new definition in determining
inverse fuzzy triangular numbers, other researchers
also discuss methods for finding the rank and
multiplication of inverse fuzzy trapezoid matrices,
however, it does not provide a definition of the
fuzzy matrix identity (Kaur, 2015), whereas
(Mohana & Mani, 2018) provides a note for
determining the adjoining fuzzy trapezoid matrix,
using basic arithmetic which is identical to the same
(Kaur & Kumar, 2017).
In this paper the author will provide and offer
new arithmetic in determining the inverse fuzzy
matrix with the same concept as the concept that has
been given in the previous author's paper, namely
(Safitri & Mashadi, 2019), (Kholida & Mashadi,
2019), (Abidin et al., 2019).
2 PRELIMINARIES
Fuzzy sets and fuzzy number are known in fuzzy,
(Zadeh, 1965) and (Zimmermann, 1996) was given
definition of fuzzy sets.
Definition 2.1. A fuzzy set ๐‘€
๎ทฉ
โŠ†๐‘‹ is a characterized
by membership function ๐‘“
๎ฏ†
๎ทฉ
๏ˆบ๐‘ฅ๏ˆป which associates
with each points in ๐‘‹ real number in the interval
๏ˆพ
0,1
๏ˆฟ
, with the value of ๐‘“
๎ฏ†
๎ทฉ
๏ˆบ๐‘ฅ๏ˆป at ๐‘ฅ representing the
"grade of membership" of ๐‘ฅ in ๐‘€
๎ทฉ
.
242
Mashadi, ., Syaiful Abidin, A. and Ratna Anta Sari, D.
New Alternative for Arithmetics Fuzzy Number.
DOI: 10.5220/0010139900002775
In Proceedings of the 1st International MIPAnet Conference on Science and Mathematics (IMC-SciMath 2019), pages 242-247
ISBN: 978-989-758-556-2
Copyright
c
๎€ 2022 by SCITEPRESS โ€“ Science and Technology Publications, Lda. All rights reserved
Definition 2.2. Let ๐‘‹ is a set of object collection
that are denoted in general by ๐‘ฅ, the a fuzzy set ๐‘€
๎ทฉ
in
๐‘‹ is a sequential set of pairs ๐‘€
๎ทฉ
๎ตŒ
๏ˆบ
๐‘‹,๐œ‡
๎ฎบ
๎ทจ
๏ˆบ
๐‘ฅ
๏ˆป|
๐‘ฅ๐œ–๐‘‹
๏ˆป
with ๐œ‡
๎ฏ†
๎ทฉ
is a membership function of the fuzzy set ๐‘€
๎ทฉ
which a mapping of the universal set ๐‘‹ in the
interval ๏ˆพ0,1๏ˆฟ.
Some basic definition and theories related to
fuzzy number has been discussed by (Gemawati et
al., 2018) and (Cong-Xin & Ming, 1991).
Definition 2.3. Fuzzy number is a fuzzy set ๐‘ข๎ทค: ๐‘…โ†’
๏ˆพ0,1๏ˆฟ with ๐‘ข๎ทค๎ตŒ๏ˆบ๐‘Ÿ,๐‘ ,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป which satisfies
1. ๐‘ข๎ทค is upper semi continuous;
2. ๐‘ข๎ทค
๏ˆบ
๐‘ฅ
๏ˆป
๎ตŒ0 outside some interval
๏ˆพ
๐‘Ÿ๎ต†๐œ€
๎ฌต
,๐‘ ๎ต…๐œ€
๎ฌถ
๏ˆฟ
;
3. There are real number ๐‘Ÿ,๐‘  in the interval
๏ˆพ
๐‘Ÿ๎ต†๐œ€
๎ฌต
,๐‘ ๎ต…๐œ€
๎ฌถ
๏ˆฟ
such that
(i) ๐‘ข๎ทค
๏ˆบ
๐‘ฅ
๏ˆป
monotonic non-decreasing in
๏ˆพ
๐‘Ÿ๎ต†
๐œ€
๎ฌต
,๐‘Ÿ
๏ˆฟ
;
(ii) ๐‘ข๎ทค
๏ˆบ
๐‘ฅ
๏ˆป
monotonic non-increasing in
๏ˆพ
๐‘ ,๐‘  ๎ต…
๐œ€
๎ฌถ
๏ˆฟ
;
(iii) ๐‘ข๎ทค
๏ˆบ
๐‘ฅ
๏ˆป
๎ตŒ1, for ๐‘Ÿ๎ต‘๐‘ฅ๎ต‘๐‘ .
Definition 2.4. Fuzzy number ๐‘ข๎ทค in ๐‘… are function
pair ๎ตฃ๐‘ข
๏ˆบ
๐‘Ÿ
๏ˆป
,๐‘ข
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตง, which satisfies the following:
1. ๐‘ข
๏ˆบ
๐‘Ÿ
๏ˆป
is a bounded left continuous non decreasing
function over ๏ˆพ0,1๏ˆฟ;
2. ๐‘ข
๏ˆบ๐‘Ÿ๏ˆป is a bounded left continuous non increasing
function over
๏ˆพ
0,1
๏ˆฟ
;
3. ๐‘ข
๏ˆบ
๐‘Ÿ
๏ˆป
๎ต‘๐‘ข
๏ˆบ
๐‘Ÿ
๏ˆป
,0๎ต‘๐‘Ÿ๎ต‘1.
(Kumar et al., 2010) provided a definition of
membership functions of trapezoidal fuzzy numbers,
given fuzzy numbers ๐‘ข๎ทค๎ตŒ๏ˆบ๐‘Ž,๐‘,๐›ผ,๐›ฝ๏ˆป where ๐‘Ž and ๐‘
are the center points, ๐›ผ distance from the center
point jarak dari titik pusat ๐‘Ž to the left, and ๐›ฝ
distance from the center point ๐‘ to the right.
Trapezoidal fuzzy numbers function have the
following form :
๐œ‡
๎ฏจ
๎ทฅ
๏ˆบ
๐‘ฅ
๏ˆป
๎ตŒ
โŽฉ
โŽช
โŽจ
โŽช
โŽง
1๎ต†
๐‘Ÿ๎ต†๐‘ฅ
๐œ€
๎ฌต
, ๐‘Ÿ ๎ต† ๐œ€
๎ฌต
๎ต‘๐‘ฅ๎ต‘๐‘Ÿ
1, ๐‘Ÿ๎ต‘๐‘ฅ๎ต‘๐‘ 
1๎ต†
๐‘ฅ๎ต†๐‘ 
๐œ€
๎ฌถ
, ๐‘ ๎ต‘๐‘ฅ๎ต‘๐‘ ๎ต… ๐œ€
๎ฌถ
0, otherwise
Trapezoidal fuzzy numbers have the following
parametric form if ๐‘ข๎ทค๎ตŒ๏ˆพ๐‘ข
๏ˆบ๐‘Ÿ๏ˆป,๐‘ข๏ˆบ๐‘Ÿ๏ˆป๏ˆฟ can be
represented as:
๐‘ข
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตŒ๐‘Ÿ๎ต†
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œ€
๎ฌต
๐‘ข
๏ˆบ
๐‘Ÿ
๏ˆป
๎ตŒ๐‘ ๎ต…
๏ˆบ
1๎ต†๐‘Ÿ
๏ˆป
๐œ€
๎ฌถ
Some authors have described arithmetic fuzzy
trapezoidal numbers like (Malkawi et al., 2014).
Two fuzzy number ๐‘ข๎ทค๎ตŒ๏ˆบ๐‘Ÿ,๐‘ ,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป and ๐‘ฃ๎ทค๎ตŒ
๏ˆบ๐‘ก,๐‘ข,๐›ฟ
๎ฌต
,๐›ฟ
๎ฌถ
๏ˆป we call same if only if ๐‘Ÿ๎ตŒ๐‘ก, ๐‘ ๎ตŒ๐‘ข,
๐œ€
๎ฌต
๎ตŒ๐›ฟ
๎ฌต
and ๐œ€
๎ฌถ
๎ตŒ๐›ฟ
๎ฌถ
.
Arithmetic on trapezoidal fuzzy numbers given
by (Kumar et al., 2011) that is if there are two fuzzy
numbers ๐‘ข๎ทค๎ตŒ
๏ˆบ
๐‘Ÿ,๐‘ ,๐œ€,๐œ€
๏ˆป
and ๐‘ฃ๎ทค๎ตŒ๏ˆบ๐‘ก,๐‘ข,๐›ฟ,๐›ฟ๏ˆป then
1. Addition
๐‘ข๎ทคโŠ•๐‘ฃ๎ทค๎ตŒ
๏ˆบ
๐‘Ÿ๎ต…๐‘ก,๐‘ ๎ต…๐‘ข,๐œ€๎ต…๐›ฟ,๐œ€๎ต…๐›ฟ
๏ˆป
2. Substraction
๐‘ข๎ทคโŠ–๐‘ฃ๎ทค๎ตŒ
๏ˆบ
๐‘Ÿ๎ต†๐‘ข,๐‘ ๎ต†๐‘ก,๐œ€๎ต…๐›ฟ,๐œ€๎ต…๐›ฟ
๏ˆป
3. Multiplication
๐‘ข๎ทคโŠ— ๐‘ฃ๎ทค๎ตŒ
๎ตฌ๏‰€
๎ฏฅ๎ฌพ๎ฏฆ
๎ฌถ
๏‰๏‰€
๎ฏง๎ฌพ๎ฏจ
๎ฌถ
๏‰
๎ต†
๐‘ค,
๏‰€
๎ฏฅ๎ฌพ๎ฏฆ
๎ฌถ
๏‰๏‰€
๎ฏง๎ฌพ๎ฏจ
๎ฌถ
๏‰
๎ต…๐‘ค,
|
๐‘ ๐›ฟ ๎ต…๐‘ข๐œ€
|
,
|
๐‘ ๐›ฟ ๎ต…๐‘ ๐œ€
|
๎ตฐ
๎€ƒ๎€ƒ
where
๐‘ค๎ตŒ๎ตฌ
๐‘”๎ต†โ„Ž
2
๎ตฐ
and
โ„Ž๎ตŒ๐‘š๐‘–๐‘›
๏ˆผ
๐‘Ÿ๐‘ก,๐‘Ÿ๐‘ข,๐‘ ๐‘ก,๐‘ ๐‘ข
๏ˆฝ
๐‘”๎ตŒ๐‘š๐‘Ž๐‘ฅ
๏ˆผ
๐‘Ÿ๐‘ก,๐‘Ÿ๐‘ข,๐‘ ๐‘ก,๐‘ ๐‘ข
๏ˆฝ
4. Scalar Mutiplication
๐‘˜โŠ—๐‘ข๎ทค๎ตŒ๎ตœ
๏ˆบ
๐‘˜๐‘Ÿ,๐‘˜๐‘ ,๐‘˜๐œ€,๐‘˜๐œ€
๏ˆป
, ๐‘˜๎ต’0
๏ˆบ
๐‘˜๐‘ ,๐‘˜๐‘Ÿ,๎ต†๐‘˜๐œ€,๎ต†๐‘˜๐œ€
๏ˆป
๐‘˜๎ต‘0
The weakness of the arithmetic above is that the
definition given only applies to two fuzzy
trapezoidal numbers which have a distance from the
center to the left and to the right of the same value.
Whereas (Kaur, 2015) provide the basic
arithmetic definition of fuzzy trapezoid numbers,
given fuzzy numbers ๐‘ข๎ทค๎ตŒ๏ˆบ๐‘š,๐‘›,๐‘,๐‘ž๏ˆป and ๐‘ฃ๎ทค๎ตŒ
๏ˆบ๐‘Ÿ,๐‘ ,๐‘ก,๐‘ข๏ˆป where ๐‘š๎ต‘๐‘›๎ต‘๐‘๎ต‘๐‘ž and ๐‘Ÿ๎ต‘๐‘ ๎ต‘๐‘ก๎ต‘
๐‘ข then:
1. Addition
๐‘ข๎ทคโŠ•๐‘ฃ๎ทค๎ตŒ
๏ˆบ
๐‘š๎ต…๐‘Ÿ,๐‘›๎ต…๐‘ ,๐‘๎ต…๐‘ก,๐‘ž๎ต…๐‘ข
๏ˆป
2. Substraction
๐‘ข๎ทคโŠ–๐‘ฃ๎ทค๎ตŒ
๏ˆบ
๐‘š๎ต†๐‘ข,๐‘›๎ต†๐‘ก,๐‘๎ต†๐‘ ,๐‘ž๎ต†๐‘Ÿ
๏ˆป
3. Multiplication
๐‘ข๎ทคโจ‚๐‘ฃ๎ทค๎ตŒ๏ˆบ๐‘š
๏‰€
๎ฏฅ๎ฌพ๎ฏฆ๎ฌพ๎ฏง๎ฌพ๎ฏจ
๎ฌธ
๏‰
,๐‘›
๏‰€
๎ฏฅ๎ฌพ๎ฏฆ๎ฌพ๎ฏง๎ฌพ๎ฏจ
๎ฌธ
๏‰
,
p
๏‰€
๎ฏฅ๎ฌพ๎ฏฆ๎ฌพ๎ฏง๎ฌพ๎ฏจ
๎ฌธ
๏‰
,๐‘ž
๏‰€
๎ฏฅ๎ฌพ๎ฏฆ๎ฌพ๎ฏง๎ฌพ๎ฏจ
๎ฌธ
๏‰
๏ˆป
4. Scalar Mutiplication
New Alternative for Arithmetics Fuzzy Number
243
๐‘˜โŠ—๐‘ข๎ทค๎ตŒ๎ตœ
๏ˆบ
๐‘˜๐‘š,๐‘˜๐‘›,๐‘˜๐‘,๐‘˜๐‘ž
๏ˆป
, ๐‘˜๎ต’0
๏ˆบ
๐‘˜๐‘ž,๐‘˜๐‘,๐‘˜๐‘›,๐‘˜๐‘š
๏ˆป
๐‘˜๎ต‘0
5. Division
๎ฏจ
๎ทฅ
๐‘ฃ
๎ทฅ
๎ตŒ
๏‰€
๎ฌธ๎ฏ 
๎ฏฅ๎ฌพ๎ฏฆ๎ฌพ๎ฏง๎ฌพ๎ฏจ
,
๎ฌธ๎ฏก
๎ฏฅ๎ฌพ๎ฏฆ๎ฌพ๎ฏง๎ฌพ๎ฏจ
,
๎ฌธ๎ฏฃ
๎ฏฅ๎ฌพ๎ฏฆ๎ฌพ๎ฏง๎ฌพ๎ฏจ
,
๎ฌธ๎ฏค
๎ฏฅ๎ฌพ๎ฏฆ๎ฌพ๎ฏง๎ฌพ๎ฏจ
๏‰
The weakness of this arithmetic is that the
defined product does not give a case if ๐‘ข๎ทค and ๐‘ฃ๎ทค are
positive or negtive fuzzy numbers, and in division
operation
๎ฏจ
๎ทฅ
๎ฏจ
๎ทฅ
๎ต๐šคฬƒ or ๐‘ข๎ทคโŠ—
๎ฌต
๎ฏจ
๎ทฅ
๎ต๐šคฬƒ .
(Mohana & Mani, 2018) defines surgery on the
trapezoidal fuzzy matrix. For example ๐‘ƒ
๎ทจ
๎ตŒ๏ˆบ๐‘๎ทค
๎ฏœ๎ฏ
๏ˆป
where ๐‘๎ทค
๎ฏœ๎ฏ
๎ตŒ๏ˆบ๐‘š
๎ฏœ๎ฏ
,๐‘›
๎ฏœ๎ฏ
,๐‘
๎ฏœ๎ฏ
,๐‘ž
๎ฏœ๎ฏ
๏ˆป and ๐‘„
๎ทจ
๎ตŒ๏ˆบ๐‘ž๎ทค
๎ฏœ๎ฏ
๏ˆป where
๐‘ž๎ทค
๎ฏœ๎ฏ
๎ตŒ๏ˆบ๐‘Ÿ
๎ฏœ๎ฏ
,๐‘ 
๎ฏœ๎ฏ
,๐‘ก
๎ฏœ๎ฏ
,๐‘ข
๎ฏœ๎ฏ
๏ˆป
1. Addition
๐‘ƒ
๎ทจ
โŠ•๐‘„
๎ทจ
๎ตŒ๎ตซ๐‘๎ทค
๎ฏœ๎ฏ
โŠ•๐‘ž๎ทค
๎ฏœ๎ฏ
๎ตฏ
2. Substraction
๐‘ƒ
๎ทจ
โŠ–๐‘„
๎ทจ
๎ตŒ๎ตซ๐‘๎ทค
๎ฏœ๎ฏ
โŠ–๐‘ž๎ทค
๎ฏœ๎ฏ
๎ตฏ
3. Multiplication
๐‘ƒ
๎ทจ
๎ตŒ๏ˆบ๐‘๎ทค
๎ฏœ๎ฏ
๏ˆป
๎ฏ ๎ตˆ๎ฏก
and ๐‘„
๎ทจ
๎ตŒ๏ˆบ๐‘ž๎ทค
๎ฏœ๎ฏ
๏ˆป
๎ฏก๎ตˆ๎ฏž
Then ๐‘ƒ
๎ทจ
โŠ—๐‘„
๎ทจ
๎ตŒ๏ˆบ๐‘Ÿฬƒ
๎ฏœ๎ฏ
๏ˆป
๎ฏ ๎ตˆ๎ฏก
where
๐‘Ÿฬƒ
๎ฏœ๎ฏ
๎ตŒ๎ท๐‘๎ทค
๎ฏœ๎ฏฆ
โŠ—
๎ฏก
๎ฏ ๎ญ€๎ฌต
๐‘ž๎ทค
๎ฏฆ๎ฏ
4. Transpose
๐‘ƒ
๎ทจ
๎ฏ
๎ตŒ๏ˆบ๐‘๎ทค
๎ฏ๎ฏœ
๏ˆป
5. Scalar Multiplication
k
๐‘ƒ
๎ทจ
๎ตŒ๏ˆบ๐‘˜๐‘๎ทค
๐‘—๐‘–
๏ˆป
The weakness of this arithmetic is that the
multiplication that is defined does not give a case if
๐‘ข๎ทค and ๐‘ฃ๎ทค are positive or negative fuzzy numbers.
3 ALTERNATIVE ARITHMETIC
FOR INVERS TRAPEZOIDAL
FUZZY MATRIX
Now at this article, the basic arithmetic operations of
fuzzy numbers used to determine the inverse matrix
are arithmetic operations with broad concepts that
have been given (Kholida & Mashadi, 2019), (Safitri
& Mashadi, 2019) and (Abidin et al., 2019). Given
two fuzzy numbers ๐‘ข๎ทค๎ตŒ๏ˆบ๐‘Ÿ,๐‘ ,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป and ๐‘ฃ๎ทค๎ตŒ
๏ˆบ๐‘ก,๐‘ข,๐›ฟ
๎ฌต
,๐›ฟ
๎ฌถ
๏ˆป are equal if only if ๐‘Ÿ๎ตŒ๐‘ก and ๐‘ ๎ตŒ๐‘ข.
Two fuzzy numbers said to be the same pure if and
only if ๐‘Ÿ๎ตŒ๐‘ก, ๐‘ ๎ตŒ๐‘ข and ๐œ€
๎ฌต
๎ตŒ๐›ฟ
๎ฌต
, ๐œ€
๎ฌถ
๎ตŒ๐›ฟ
๎ฌถ
.
1. Addition
๐‘ข๎ทคโŠ•๐‘ฃ๎ทค๎ตŒ
๏ˆบ
๐‘Ÿ๎ต…๐‘ก,๐‘ ๎ต…๐‘ข,๐œ€
๎ฌต
๎ต…๐›ฟ
๎ฌต
,๐œ€
๎ฌถ
๎ต…๐›ฟ
๎ฌถ
๏ˆป
2. Substraction
๐‘ข๎ทคโŠ–๐‘ฃ๎ทค๎ตŒ
๏ˆบ
๐‘Ÿ๎ต†๐‘ข,๐‘ ๎ต†๐‘ก,๐œ€
๎ฌต
๎ต…๐›ฟ
๎ฌถ
,๐œ€
๎ฌถ
๎ต…๐›ฟ
๎ฌต
๏ˆป
3. Scalar Multiplication
๐‘˜โŠ—๐‘ข๎ทค๎ตŒ๐‘˜โŠ—
๏ˆบ๐‘Ÿ,๐‘ ,๐œ€
1
,๐œ€
2
๏ˆป๎€ƒ
๎ตŒ๎ตœ
๏ˆบ
๐‘˜๐‘Ÿ,๐‘˜๐‘ ,๐‘˜๐œ€
๎ฌต
,๐‘˜๐œ€
๎ฌถ
๏ˆป
, ๐‘˜๎ต’0
๏ˆบ
๐‘˜๐‘ ,๐‘˜๐‘Ÿ,๎ต†๐‘˜๐œ€
๎ฌถ
,๎ต†๐‘˜๐œ€
๎ฌต
๏ˆป
๐‘˜๎ต‘0
4. Multiplication
a. Case 1, if ๐‘ข๎ทค positive and ๐‘ฃ๎ทค positive, then:
๐‘ข๎ทคโจ‚๐‘ฃ๎ทค๎ตŒ๎ตซ๐‘Ÿ๐‘ก,๐‘ ๐‘ข,
๏ˆบ
๐‘Ÿ๐›ฟ
๎ฌต
๎ต…๐‘ก๐œ€
๎ฌต
๏ˆป
,
๏ˆบ
๐‘ ๐›ฟ
๎ฌถ
๎ต…๐‘ข๐œ€
๎ฌถ
๏ˆป
๎ตฏ
b. Case 2, if ๐‘ข๎ทค positive and ๐‘ฃ๎ทค negative, then:
๐‘ข๎ทคโจ‚๐‘ฃ๎ทค๎ตŒ๎ตซ๐‘ ๐‘ก,๐‘Ÿ๐‘ข,
๏ˆบ
๐‘ ๐›ฟ
๎ฌต
๎ต†๐‘ก๐œ€
๎ฌถ
๏ˆป
,
๏ˆบ
๐‘Ÿ๐›ฟ
๎ฌถ
๎ต†๐‘ข๐œ€
๎ฌต
๏ˆป
๎ตฏ
c. Case 3, if ๐‘ข๎ทค negative and ๐‘ฃ๎ทค positive, then:
๐‘ข๎ทคโจ‚๐‘ฃ๎ทค๎ตŒ๎ตซ๐‘Ÿ๐‘ข,๐‘ ๐‘ก,
๏ˆบ
๐‘ข๐œ€
๎ฌต
๎ต†๐‘Ÿ๐›ฟ
๎ฌถ
๏ˆป
,
๏ˆบ
๐‘ก๐œ€
๎ฌถ
๎ต†๐‘ ๐›ฟ
๎ฌต
๏ˆป
๎ตฏ
d. Case 4, if ๐‘ข๎ทค negative and ๐‘ฃ๎ทค negative, then:
๐‘ข๎ทคโจ‚๐‘ฃ๎ทค๎ตŒ๎ตซ๐‘ ๐‘ข,๐‘Ÿ๐‘ก,๎ต†
๏ˆบ
๐‘ข๐œ€
๎ฌถ
๎ต…๐‘ ๐›ฟ
๎ฌถ
๏ˆป
,๎ต†
๏ˆบ
๐‘Ÿ๐›ฟ
๎ฌต
๎ต…๐‘ก๐œ€
๎ฌต
๏ˆป
๎ตฏ
5. Identity of Fuzzy Number
The identity for fuzzy numbers is divided into
two, namely pure identity where ๐šคฬƒ
๎ฏ 
๎ตŒ
๏ˆบ
1,1,0,0
๏ˆป
and
identity where ๐šคฬƒ๎ตŒ๏ˆบ1,1,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป.
6. Inverse of Fuzzy Number
๐‘ข๎ทคโจ‚๐‘ฃ๎ทค๎ตŒ
๏ˆบ๐‘Ÿ,๐‘ ,๐œ€
1
,๐œ€
2
๏ˆป โจ‚๏ˆบ๐‘ก,๐‘ข,๐›ฟ
1
,๐›ฟ
2
๏ˆป๎€ƒ
๎ตŒ๎ตซ๐‘Ÿ๐‘ก,๐‘ ๐‘ข,
๏ˆบ
๐‘Ÿ๐›ฟ
๎ฌต
๎ต…๐‘ก๐œ€
๎ฌต
๏ˆป
,
๏ˆบ
๐‘ ๐›ฟ
๎ฌถ
๎ต…๐‘ข๐œ€
๎ฌถ
๏ˆป
๎ตฏ
So that inverse of trapezoidal fuzzy number with
๐‘Ÿ,๐‘ ๎ต 0 are obtain :
๐‘ฃ๎ทค๎ตŒ๎ตฌ
1
๐‘Ÿ
,
1
๐‘ 
,
๎ต†๐œ€
๎ฌต
๐‘Ÿ
๎ฌถ
,
๎ต†๐œ€
๎ฌถ
๐‘ 
๎ฌถ
๎ตฐ
7. Inverse of Fuzzy Matrix
Similar to fuzzy numbers, fuzzy matrices also
have two identities namely pure identity is defined
as follows:
๐ผ
๏ˆš
๎ฏ 
๎ตŒ๎ตฃ๐‘Ž
๎ฏœ๎ฏ
๎ตง
Where
๐‘Ž
๎ฏœ๎ฏ
๎ตŒ๎ตœ
๏ˆบ
0,0,0,0
๏ˆป
, ๐‘“๐‘œ๐‘Ÿ ๐‘–๎ต๐‘—
๏ˆบ
1,1,0,0
๏ˆป
, ๐‘“๐‘œ๐‘Ÿ ๐‘–๎ตŒ๐‘—
IMC-SciMath 2019 - The International MIPAnet Conference on Science and Mathematics (IMC-SciMath)
244
To get the result of ๐‘ƒ
๎ทจ
โŠ—๐‘ƒ
๎ทจ
๎ฌฟ๎ฌต
๎ตŒ๐ผ
๏ˆš
๎ฏ 
is very
difficult so that another alternative to the matrix
identity is defined as follows :
๐ผ
๏ˆš
๎ตŒ๎ตฃ๐‘Ž
๎ฏœ๎ฏ
๎ตง
where
๐‘Ž
๎ฏœ๎ฏ
๎ตŒ๏‰Š
๎ตซ0,0,๐œ€
๎ฏœ๎ฏ
,๐œ€
๎ฏœ๎ฏ
๎ตฏ, ๐‘“๐‘œ๐‘Ÿ ๐‘–๎ต๐‘—
๎ตซ1,1,๐œ€
๎ฏœ๎ฏ
,๐œ€
๎ฏœ๎ฏ
๎ตฏ, ๐‘“๐‘œ๐‘Ÿ ๐‘–๎ตŒ๐‘—
Let
๐‘ƒ
๎ทจ
๎ตŒ๎ตฃ๐‘Ž๎ทค
๎ฏœ๎ฏ
๎ตง
where
๐‘Ž๎ทค
๎ฏœ๎ฏœ
๎ตŒ๎ตซ๐‘Ž
๐‘–๐‘–
,๐‘
๐‘–๐‘–
,๐›ผ
๐‘–๐‘–
,๐›ฝ
๐‘–๐‘–
๎ตฏ
๐‘Ž
๎ทฅ
๎ฏœ๎ฏ
๎ตŒ๎ตซ๐‘Ž
๎ฏœ๎ฏ
,๐‘
๎ฏœ๎ฏ
,๐›ผ
๎ฏœ๎ฏ
,๐›ฝ
๎ฏœ๎ฏ
๎ตฏ
for ๐‘–๎ต๐‘—.
Then it can be partitioned into:
๐‘€๎ตŒ๎ตฆ
๐‘Ž
๎ฌต๎ฌต
๐‘Ž
๎ฌต๎ฌถ
โ‹ฏ๐‘Ž
๎ฌต๎ฏก
๐‘Ž
๎ฌถ๎ฌต
๐‘Ž
๎ฌถ๎ฌถ
โ‹ฏ๐‘Ž
๎ฌถ๎ฏก
โ‹ฎ
๐‘Ž
๎ฏ ๎ฌต
โ‹ฎ
๐‘Ž
๎ฏ ๎ฌถ
โ‹ฑ โ‹ฎ
โ‹ฏ๐‘Ž
๎ฏ ๎ฏก
๎ตช
๐‘๎ตŒ๎ตฆ
๐‘
๎ฌต๎ฌต
๐‘
๎ฌต๎ฌถ
โ‹ฏ๐‘
๎ฌต๎ฏก
๐‘
๎ฌถ๎ฌต
๐‘
๎ฌถ๎ฌถ
โ‹ฏ๐‘
๎ฌถ๎ฏก
โ‹ฎ
๐‘
๎ฏ ๎ฌต
โ‹ฎ
๐‘
๎ฏ ๎ฌถ
โ‹ฑ โ‹ฎ
โ‹ฏ๐‘
๎ฏ ๎ฏก
๎ตช
๐‘ƒ๎ตŒ๎ตฆ
๐›ผ
๎ฌต๎ฌต
๐›ผ
๎ฌต๎ฌถ
โ‹ฏ๐›ผ
๎ฌต๎ฏก
๐›ผ
๎ฌถ๎ฌต
๐›ผ
๎ฌถ๎ฌถ
โ‹ฏ๐›ผ
๎ฌถ๎ฏก
โ‹ฎ
๐›ผ
๎ฏ ๎ฌต
โ‹ฎ
๐›ผ
๎ฏ ๎ฌถ
โ‹ฑ โ‹ฎ
โ‹ฏ๐›ผ
๎ฏ ๎ฏก
๎ตช
๐‘„๎ตŒ๎ตฆ
๐›ฝ
๎ฌต๎ฌต
๐›ฝ
๎ฌต๎ฌถ
โ‹ฏ๐›ฝ
๎ฌต๎ฏก
๐›ฝ
๎ฌถ๎ฌต
๐›ฝ
๎ฌถ๎ฌถ
โ‹ฏ๐›ฝ
๎ฌถ๎ฏก
โ‹ฎ
๐›ฝ
๎ฏ ๎ฌต
โ‹ฎ
๐›ฝ
๎ฏ ๎ฌถ
โ‹ฑ โ‹ฎ
โ‹ฏ๐›ฝ
๎ฏ ๎ฏก
๎ตช
Then ๐‘ƒ
๎ทจ
can be written ๐‘ƒ
๎ทจ
๎ตŒ๏ˆบ๐‘ƒ,๐‘„,๐ธ
๎ฌต
,๐ธ
๎ฌถ
๏ˆป and
๐‘„
๎ทจ
๎ตŒ๏ˆบ๐‘…,๐‘†,๐ท
๎ฌต
,๐ท
๎ฌถ
๏ˆป, then the fuzzy matrix ๐‘ƒ
๎ทจ
๎ตŒ๐‘„
๎ทจ
if
๐‘ƒ๎ตŒ๐‘…,๐‘„๎ตŒ๐‘†,๐ธ
๎ฌต
๎ตŒ๐ท
๎ฌต
,๐ธ
๎ฌถ
๎ตŒ๐ท
๎ฌถ
. Matrix fuzzy ๐‘„
๎ทจ
is said to be an inverse of the fuzzy matrix ๐‘ƒ
๎ทจ
if
๐‘ƒ
๎ทจ
โŠ—
๐‘„
๎ทฉ
๎ตŒ๐ผ
๏ˆš
Assuming each element the fuzzy matrix ๐‘ƒ
๎ทจ
and
๐‘„
๎ทจ
are positive fuzzy numbers, then
๏ˆบ
๐‘ƒ,๐‘„,๐ธ
๎ฌต
,๐ธ
๎ฌถ
๏ˆป
โŠ—
๏ˆบ
๐‘…,๐‘†,๐ท
๎ฌต
,๐ท
๎ฌถ
๏ˆป
๎ตŒ๏ˆบ๐ผ,๐ผ,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป๎€ƒ
๏ˆบ๐‘ƒ๐‘…,๐‘„๐‘†,๐‘๐บ,๐‘ƒ๐ท
๎ฌต
๎ต…๐‘…๐ธ
๎ฌต
,๐‘„๐ท
๎ฌถ
๎ต…๐‘†๐ธ
๎ฌถ
๏ˆป๎ตŒ๏ˆบ๐ผ,๐ผ,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป๎€ƒ
was obtain
๎ตž
๐‘ƒ๐‘…๎ตŒ๐ผ
๐‘„๐‘†๎ตŒ๐ผ
๐‘ƒ๐ท
๎ฌต
๎ต…๐‘…๐ธ
๎ฌต
๎ตŒ๐œ€
๎ฌต
๐‘„๐ท
๎ฌถ
๎ต…๐‘†๐ธ
๎ฌถ
๎ตŒ๐œ€
๎ฌถ
So
๐‘…๎ตŒ๐‘ƒ
๎ฌฟ๎ฌต
๐‘†๎ตŒ๐‘„
๎ฌฟ๎ฌต
๐ท
๎ฌต
๎ตŒ๐‘ƒ
๎ฌฟ๎ฌต
๏ˆบ๐œ€
๎ฌต
๎ต†๐‘…๐ธ
๎ฌต
๏ˆป
๐ท
๎ฌถ
๎ตŒ๐‘„
๎ฌฟ๎ฌต
๏ˆบ๐œ€
๎ฌถ
๎ต†๐‘†๐ธ
๎ฌถ
๏ˆป
Based on the algebra above ๐‘ƒ
๎ฌฟ๎ฌต
and ๐‘„
๎ฌฟ๎ฌต
can be
searched directly, so the authors provide the
definition of the matrix ๐‘„
๎ทจ
or ๐‘ƒ
๎ทจ
๎ฌฟ๎ฌต
as follow :
๐‘ƒ
๎ทจ
๎ฌฟ๎ฌต
๎ตŒ๏ˆบ๐‘ƒ
๎ฌฟ๎ฌต
,๐‘„
๎ฌฟ๎ฌต
,๐ธ
๎ฌต
๎ฌฟ๎ฌต
,๐ธ
๎ฌถ
๎ฌฟ๎ฌต
๏ˆป
Furthermore, it will be proven that
๐‘ƒ
๎ทจ
โŠ—๐‘ƒ
๎ทจ
๎ฌฟ๎ฌต
๎ตŒ๐ผ
๏ˆš
then
๏ˆบ
๐‘ƒ,๐‘„,๐ธ
๎ฌต
,๐ธ
๎ฌถ
๏ˆป
โŠ—๎ตซ๐‘ƒ
๎ฌฟ๎ฌต
,๐‘„
๎ฌฟ๎ฌต
,๐ธ
๎ฌต
๎ฌฟ๎ฌต
,๐ธ
๎ฌถ
๎ฌฟ๎ฌต
๎ตฏ๎ตŒ๐ผ
๏ˆš
Assuming each element of the fuzzy matrix is a
positive fuzzy number, arithmetic multiplication of
positive fuzzy number and positive fuzzy number is
obtained:
๐‘ƒ
๎ทจ
โŠ—๐‘ƒ
๎ทจ
๎ฌฟ๎ฌต
๎ตŒ๎ตซ๐‘ƒ๐‘ƒ
๎ฌฟ๎ฌต
,๐‘„๐‘„
๎ฌฟ๎ฌต
,๐‘ƒ
๎ฌฟ๎ฌต
๐ธ
๎ฌต
๎ต…๐‘ƒ๐ธ
๎ฌต
๎ฌฟ๎ฌต
,
๐‘„
๎ฌฟ๎ฌต
๐ธ
๎ฌถ
๎ต…๐‘„๐ธ
๎ฌถ
๎ฌฟ๎ฌต
๎ตฏ
๎ตŒ ๎ตซ๐ผ,๐ผ,๐‘ƒ
๎ฌฟ๎ฌต
๐ธ
๎ฌต
๎ต…๐‘ƒ๐ธ
๎ฌต
๎ฌฟ๎ฌต
,๐‘„
๎ฌฟ๎ฌต
๐ธ
๎ฌถ
๎ต…๐‘„๐ธ
๎ฌถ
๎ฌฟ๎ฌต
๎ตฏ
Assume if ๐‘ƒ
๎ฌฟ๎ฌต
๐ธ
๎ฌต
๎ต…๐‘ƒ๐ธ
๎ฌต
๎ฌฟ๎ฌต
๎ตŒ๐œ€
๎ฌต
and ๐‘„
๎ฌฟ๎ฌต
๐ธ
๎ฌถ
๎ต…
๐‘„๐ธ
๎ฌถ
๎ฌฟ๎ฌต
๎ตŒ๐œ€
๎ฌถ
.
then
๐‘ƒ
๎ทจ
โŠ—๐‘ƒ
๎ทจ
๎ฌฟ๎ฌต
๎ตŒ๏ˆบ๐ผ,๐ผ,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป
Thus it is evident that ๐‘ƒ
๎ทจ
โŠ—๐‘ƒ
๎ทจ
๎ฌฟ๎ฌต
have identity results.
Given two trapezoidal fuzzy matrices ๐ด
๏ˆš
๎ตŒ
๏ˆบ
๐ด,๐ต,๐ถ,๐ท
๏ˆป
and ๐ต
๎ทจ
๎ตŒ
๏ˆบ
๐ธ,๐น,๐บ,๐ป
๏ˆป
with
๐ด
๏ˆš
๎ฌฟ๎ฌต
๎ตŒ
๏ˆบ
๐ด
๎ฌฟ๎ฌต
,๐ต
๎ฌฟ๎ฌต
,๐ถ
๎ฌฟ๎ฌต
,๐ท
๎ฌฟ๎ฌต
๏ˆป
and
๐ต
๎ทจ
๎ฌฟ๎ฌต
๎ตŒ
๏ˆบ
๐ธ
๎ฌฟ๎ฌต
,๐น
๎ฌฟ๎ฌต
,๐บ
๎ฌฟ๎ฌต
,๐ป
๎ฌฟ๎ฌต
๏ˆป
will show that :
๎ตซ๐ด
๏ˆš
โŠ—๐ต
๎ทจ
๎ตฏ
๎ฌฟ๎ฌต
๎ตŒ๐ต
๎ทจ
๎ฌฟ๎ฌต
โŠ—๐ด
๏ˆš
๎ฌฟ๎ฌต
๐ด
๏ˆš
โŠ—๐ต
๎ทจ
๎ตŒ
๏ˆบ
๐ด,๐ต,๐ถ,๐ท
๏ˆป
โŠ—
๏ˆบ
๐ธ,๐น,๐บ,๐ป
๏ˆป
๎ตŒ๐‘€๐พ,๐‘๐ฟ,๐‘€๐‘…๎ต…๐พ๐‘ƒ,๐‘๐‘†๎ต…๐ฟ๐‘„
๎ตซ๐ด
๏ˆš
โŠ—๐ต
๎ทจ
๎ตฏ
๎ฌฟ๎ฌต
๎ตŒ
๏ˆบ๏ˆบ
๐‘€๐พ
๏ˆป
๎ฌฟ๎ฌต
,
๏ˆบ
๐‘๐ฟ
๏ˆป
๎ฌฟ๎ฌต
,
๏ˆบ
๐‘€๐‘…๎ต… ๐พ๐‘ƒ
๏ˆป
๎ฌฟ๎ฌต
,
๏ˆบ
๐‘๐‘†๎ต…๐ฟ๐‘„
๏ˆป
๎ฌฟ๎ฌต
๏ˆป
๎ตŒ๐พ
๎ฌฟ๎ฌต
๐‘€
๎ฌฟ๎ฌต
,๐ฟ
๎ฌฟ๎ฌต
๐‘
๎ฌฟ๎ฌต
,
๏ˆบ
๐‘€๐‘…๎ต… ๐พ๐‘ƒ
๏ˆป
๎ฌฟ๎ฌต
,
๏ˆบ
๐‘๐‘†๎ต…๐ฟ๐‘„
๏ˆป
๎ฌฟ๎ฌต
and
๐ต
๎ทจ
๎ฌฟ๎ฌต
โŠ—๐ด
๏ˆš
๎ฌฟ๎ฌต
๎ตŒ
๏ˆบ
๐พ
๎ฌฟ๎ฌต
,๐ฟ
๎ฌฟ๎ฌต
,๐‘…
๎ฌฟ๎ฌต
,๐‘†
๎ฌฟ๎ฌต
๏ˆป
โŠ—
๏ˆบ
๐‘€
๎ฌฟ๎ฌต
,๐‘
๎ฌฟ๎ฌต
,๐‘ƒ
๎ฌฟ๎ฌต
,๐‘„
๎ฌฟ๎ฌต
๏ˆป
New Alternative for Arithmetics Fuzzy Number
245
๎ตŒ๏ˆบ๐พ
๎ฌฟ๎ฌต
๐‘€
๎ฌฟ๎ฌต
,๐ฟ
๎ฌฟ๎ฌต
๐‘
๎ฌฟ๎ฌต
, ๐พ
๎ฌฟ๎ฌต
๐‘ƒ
๎ฌฟ๎ฌต
๎ต…๐‘€
๎ฌฟ๎ฌต
๐‘…
๎ฌฟ๎ฌต
,๐ฟ
๎ฌฟ๎ฌต
๐‘„
๎ฌฟ๎ฌต
๎ต…๐‘
๎ฌฟ๎ฌต
๐‘†
๎ฌฟ๎ฌต
๏ˆป
From the algebra above it is obtained that:
๏ˆบ๐‘€๐‘…๎ต… ๐พ๐‘ƒ๏ˆป
๎ฌฟ๎ฌต
๎ต๐‘€
๎ฌฟ๎ฌต
๐‘…
๎ฌฟ๎ฌต
๎ต… ๐พ
๎ฌฟ๎ฌต
๐‘ƒ
๎ฌฟ๎ฌต
and
๏ˆบ๐‘๐‘† ๎ต… ๐ฟ๐‘„๏ˆป
๎ฌฟ๎ฌต
๎ต๐‘
๎ฌฟ๎ฌต
๐‘†
๎ฌฟ๎ฌต
๎ต…๐ฟ
๎ฌฟ๎ฌต
๐‘„
๎ฌฟ๎ฌต
The next step will be indicated
๎ตซ๐ด
๏ˆš
โŠ—๐ต
๎ทจ
๎ตฏโŠ—๎ตซ๐ด
๏ˆš
โŠ—๐ต
๎ทจ
๎ตฏ
๎ฌฟ๎ฌต
๎ตŒ๐ผ
๏ˆš
๎ตŒ
๏ˆบ
๐‘€๐พ,๐‘๐ฟ,๐‘€๐‘…๎ต… ๐พ๐‘ƒ,๐‘๐‘†๎ต… ๐ฟ๐‘„
๏ˆป
โŠ—
๏ˆบ๏ˆบ
๐‘€๐พ
๏ˆป
๎ฌฟ๎ฌต
,
๏ˆบ
๐‘๐ฟ
๏ˆป
๎ฌฟ๎ฌต
,
๏ˆบ
๐‘€๐‘…๎ต… ๐พ๐‘ƒ
๏ˆป
๎ฌฟ๎ฌต
,
๏ˆบ
๐‘๐‘† ๎ต…๐ฟ๐‘„
๏ˆป
๎ฌฟ๎ฌต
๏ˆป
๎ตŒ๏ˆบ๐‘€๐พ
๏ˆบ
๐‘€๐พ
๏ˆป
๎ฌฟ๎ฌต
,๐‘๐ฟ
๏ˆบ
๐‘๐ฟ
๏ˆป
๎ฌฟ๎ฌต
,๐‘€๐พ
๏ˆบ
๐‘€๐‘…๎ต… ๐พ๐‘ƒ
๏ˆป
๎ฌฟ๎ฌต
๎ต…
๏ˆบ
๐‘€๐พ
๏ˆป
๎ฌฟ๎ฌต
๏ˆบ
๐‘€๐‘… ๎ต…๐พ๐‘ƒ
๏ˆป
,๐‘๐ฟ๏ˆบ๐‘๐‘†๎ต…๐ฟ๐‘„๏ˆป
๎ฌฟ๎ฌต
๎ต…
๏ˆบ
๐‘๐ฟ
๏ˆป
๎ฌฟ๎ฌต
๎ต…๏ˆบ๐‘๐‘†๎ต…๐ฟ๐‘„๏ˆป๏ˆป
๎ตŒ๏ˆบ๐ผ,๐ผ,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป๎ตŒ๐ผ
๏ˆš
So it can be conclude that ๐‘ƒ
๎ทจ
โŠ—๐‘ƒ
๎ทจ
๎ฌฟ๎ฌต
produces
identity, not pure identity.
Numerical Example
Given
๐ด
๏ˆš
๐‘ฅ๎ทค๎ตŒ๐‘
๎ทจ
where
๐ด
๏ˆš
๎ตŒ๎ตค
๏ˆบ
5,6,2,3
๏ˆป๏ˆบ
3,5,4,2
๏ˆป
๏ˆบ
9,11,2,1
๏ˆป๏ˆบ
3,7,1,2
๏ˆป
๎ตจ
๐‘
๎ทจ
๎ตŒ๎ตค
๏ˆบ34,56,45,37๏ˆป
๏ˆบ54,94,52,32๏ˆป
๎ตจ
and will be find ๐‘ฅ๎ทค.
From ๐ด
๏ˆš
we get
๐‘€๎ตŒ๏‰‚
53
93
๏‰ƒ,๐‘๎ตŒ๏‰‚
65
11 7
๏‰ƒ
๐‘ƒ๎ตŒ๏‰‚
24
21
๏‰ƒ,๐‘„๎ตŒ๏‰‚
32
12
๏‰ƒ
and from ๐‘
๎ทจ
we get
๐‘๎ตŒ๏‰‚
34
54
๏‰ƒ, ๐‘”๎ตŒ๏‰‚
56
94
๏‰ƒ, โ„Ž๎ตŒ๏‰‚
45
52
๏‰ƒ, ๐‘ก๎ตŒ๏‰‚
37
32
๏‰ƒ
We get
๐ด
๏ˆš
๎ฌฟ๎ฌต
๎ตŒ๎ตฆ
๎ตฌ
๎ต†1
4
,
๎ต†7
13
,
๎ต†1
6
,
1
2
๎ตฐ๎ตฌ
1
4
,
5
13
,
2
3
,
๎ต†1
2
๎ตฐ
๎ตฌ
3
4
,
11
13
,
1
3
,
๎ต†1
4
๎ตฐ๎ตฌ
๎ต†5
12
,
๎ต†6
13
,
๎ต†1
3
,
3
4
๎ตฐ
๎ตช
then
๐‘ฅ๎ทค๎ตŒ๐ด
๏ˆš
๎ฌฟ๎ฌต
๐‘
๎ทจ
So we get the results of ๐‘ฅ๎ทค is
๐‘ฅ๎ทค๎ตŒ๎ตค
๏ˆบ
5,6,4,1
๏ˆป
๏ˆบ
3,4,1,1
๏ˆป
๎ตจ
Then to check the truth of the results from ๐ด
๏ˆš
๎ฌฟ๎ฌต
will be shown
๐ด
๏ˆš
โŠ—๐ด
๏ˆš
๎ฌฟ๎ฌต
๎ตŒ๐ผ
๏ˆš
and ๐ด
๏ˆš
๎ฌฟ๎ฌต
โŠ—๐ด
๏ˆš
๎ตŒ๐ผ
๏ˆš
.
๐ด
๏ˆš
โŠ—๐ด
๏ˆš
๎ฌฟ๎ฌต
๎ตŒ๎ตฆ
๎ตฌ1,1,2
2
3
,1
43
52
๎ตฐ ๎ตฌ0,0,1
1
6
,
51
52
๎ตฐ
๎ตฌ0,0,7
1
4
,
47
52
๎ตฐ๎ตฌ1,1,
11
12
,
๎ต†41
52
๎ตฐ
๎ตช
๎ตŒ๏ˆบ๐ผ,๐ผ,๐œ€
๎ฌต
,๐œ€
๎ฌถ
๏ˆป๎ตŒ๐ผ
๏ˆš
and
๐ด
๏ˆš
๎ฌฟ๎ฌต
โŠ—๐ด
๏ˆš
๎ตŒ๎ตฆ
๎ตฌ1,1,2
2
3
,1
7
26
๎ตฐ๎ตฌ0,0,1
1
6
,๎ต†1
37
78
๎ตฐ
๎ตฌ0,0,๎ต†
1
4
,2
17
52
๎ตฐ๎ตฌ1,1,5
1
12
,
133
156
๎ตฐ
๎ตช
4 CONCLUSIONS
In this article, arithmetic alternatives to fuzzy
numbers and alternative elements of identity are
pure identity and identity in fuzzy trapezoidal
numbers and fuzzy trapezoidal matrices. After the
arithmetic alternative is obtained, the inverse of a
matrix can be determined. The matrix inverse
obtained can be used to solve system of fully fuzzy
linear equations
๐ด
๏ˆš
โŠ—๐‘ฅ๎ทค๎ตŒ๐‘
๎ทจ
directly, with
๐‘ฅ๎ทค๎ตŒ
๐ด
๏ˆš
๎ฌฟ๎ฌต
โŠ—๐‘
๎ทจ
.
REFERENCES
Abidin, A. S., Mashadi, & Gemawati, S. (2019). Algebraic
Modification of Trapezoidal Fuzzy Numbers to
Complete Fully Fuzzy Linear Equations System Using
Gauss-Jacobi Method. IJMFS, 2, 40โ€“46.
Cong-Xin, W., & Ming, M. (1991). Emmbedding Problem
of Fuzzy Number Space: Part I. Fuzzy Set and
Systems, 44, 33โ€“38.
Deswita, Z., & Mashadi. (2019). Alternative Multiplying
Triangular Fuzzy Number and Applied in Fully Fuzzy
Linear System. ASRJETS, 56, 113โ€“123.
Gemawati, S., Nasfianti, I., Mashadi, & Hadi, A. (2018).
A new method for dual fully fuzzy linear system with
trapezoidal fuzzy number by QR decomposition.
Proceeding of International Conference on Science
and Technology, 1116, 1โ€“5.
Kaur, J. (2015). Methods to Find the Rank and
Multiplicative Inverse of Fully Fuzzy Matrices.
Mathematical Sciences an Internasional Journal, 4,
118โ€“122.
Kaur, J., & Kumar, A. (2017). Commentary on
โ€œCalculating fuzzy inverse matrix using fuzzy linear
equation system.โ€ Applied Soft Computing, 58, 324โ€“
327.
Kholida, H., & Mashadi. (2019). Alternative Fuzzy
Algebra for Fuzzy Linear System Using Cramers
Rules on Fuzzy Trapezoidal Number. IJISRT, 4, 494โ€“
500.
IMC-SciMath 2019 - The International MIPAnet Conference on Science and Mathematics (IMC-SciMath)
246
Kumar, A., Babbar, N., & Bansal, A. (2010). A method
for solving fully fuzzy linear system with trapezoidal
fuzzy number. Iranian Journal of Optimization, 2,
359โ€“374.
Kumar, A., Kaur, J., & Singh, P. (2011). A New Method
for Solving Fuzzy Linear Programs with Trapezoidal
Fuzzy Number. Journal of Fuzzy Set Valued Analysis,
1โ€“12.
Malkawi, G., Ahmad, N., & Ibrahim, H. (2014). Solving
fully fuzzy linear system with the necessary an
suficientto have a positive solution. AMIS, 8, 1003โ€“
1019.
Mohana, D. N., & Mani, R. (2018). A Note on Adjoint of
Trapezoidal Fuzzy Number Matrices. IJIRT, 4(9), 32โ€“
37.
Nasheri, S. H., & Gholami, M. (2011). Linear system of
equation with trapezoidal fuzzy numbers. The Journal
of Mathematics and Computer Science, 3, 71โ€“79.
Safitri, Y., & Mashadi. (2019). Alternative Fuzzy Algebra
to Solve Dual Fully Fuzzy Linear System Using ST
Decomposition Method. IOSR-JM, 32โ€“38.
Sari, D. R. A., & Mashadi. (2019). New Arithmetic
Triangular Fuzzy Number for Solving fully Fuzzy
Linear System Using Inverse Matrix. IJSBAR, 46,
169โ€“180.
Zadeh, L. A. (1965). The Concept of a Linguistic Variable
and its Application to Approximate Reasoning-I.
Information Sciences, 8, 199โ€“249.
Zimmermann, H. J. (1996). Fuzzy Set Theory and Its
Applications (Second). Kluwer Academic Publishers.
New Alternative for Arithmetics Fuzzy Number
247