4 CONCLUSION
Four poly-extremophilic strains isolated from
undersea fumaroles in Pria Laot Sabang were able to
secrete extracellular hydrolytic enzymes. PLS 75
was the most potent strain to produce thermostable
α-amylase and cellulase. The strain had a close
relationship with uncultured microorganism after
16s rRNA gene sequence analysis. The results of
growth condition experiments show that PLS 75
optimally produced thermostable α-amylase at 60°C
and pH 5 for 30 h incubation. It resisted high salt
concentration. This study provided preliminary
information on PLS 75 cultivation conditions. may
The results may be used for scaling-up of the
enzyme production for various uses.
ACKNOWLEDGMENT
This work was financed by the Fundamental
Research Grant Number 383/UN11/A.01/
APBNP2T/13 from Universitas Syiah Kuala.
REFERENCES
Annamalai, N., Thavasi, R. and Vijayalakshmi, S. and
Balasubramanian, T. 2011, 'Extraction, purification
and characterisation of thermostable, alkaline tolerant
α-amylase from Bacillus cereus', Indian Journal of
Microbiology 51 (4), 424–429.
Baysal, Z., Uyar, F. and Aytekin, C. 2003, 'Production of
α-amylase by thermotolerant Bacillus subtilis in the
presence of some carbon, nitrogen-containing
compounds and surfactants', Annals of Microbiology
53 (3), 323–328.
Berekaa, M. M., Soliman, N. A. and Abdel-Fattah, Y. R.
2007, 'Partial characterisation and cloning of
thermostable α-amylase of a thermophile Geobacillus
thermoleovorans YN', Biotechnology 6, 175–183.
Dalmaso, G. Z. L., Ferreira, D. and Vermelho, A. B. 2015,
'Marine extremophiles a source of hydrolases for
biotechnological applications', Marine Drugs 13 (4),
1925–1965.
Demirkan, E., Sevgi, T. and Başkurt, M. 2017,
'Optimisation of physical factors affecting the
production of the α-amylase from a newly isolated
Bacillus sp. M10 strain’, Karaelmas Fen ve
Mühendislik Dergisi 7 (1), 23–30.
Devi, L. S., Khaund, P. and Joshi, S. R. 2010,
Thermostable α -amylase from natural variants of
Bacillus sp. prevalent in Eastern Himalayan range.
African Journal of Microbiology Research 4 (23),
2534-2542.
Elleuche, S., Schafers, C., Blank, S., Schroder, C. and
Antranikian, G. 2015, 'Exploration of extremophiles
for high-temperature biotechnological processes',
Current Opinion in Microbiology 25, 113–119.
Elmansy, E. A., Asker, M. S., El-Kady, E. M., Hassanein,
S. M and El-Beih F. M. 2018, 'Production and
optimisation of α-amylase from thermo-halophilic
bacteria isolated from different local marine
environments', Bulletin of the National Research
Center 42: 31.
Ghorbel, R. E. Maktouf, S., Massoud, E. B., Bejar, S., and
Chaabouni, S. E. 2009, 'Thermostable amylase from
Bacillus cohnii US147 with broad pH applicability',
Applied Biochemistry and Biotechnology 157, 50–60.
Grand View Research 2019, Enzymes market size, share
and trends analysis report by product (carboydrases,
proteases, lipases), by application (industrial,
specialty), by end use, by region, and segment
forecasts, 2019 - 2025. [online] Available at:
https://www.grandviewresearch.com/industry-
analysis/enzymes-industry [Accessed 26 August
2019].
Iqbalsyah, T. M., Fajarna, F. and Febriani 2018,
'Purification and partial characterisation of α-amylase
produced by a thermo-halophilic bacterium isolate
PLS 75', Biosaintifika 10 (3), 574–580.
Iqbalsyah, T. M., Malahayati, M. Atikah, A. and Febriani,
F. 2019a, 'Cultivation conditions for protease
production by a thermo-halostable bacterial isolate
PLS A', Jurnal Natural 19 (1), 18–23.
Iqbalsyah, T. M., Malahayati, Atikah and Febriani 2019b,
'Purification and partial characterisation of a thermo-
halostable protease produced by Geobacillus sp. strain
PLS A isolated from undersea fumaroles', Journal of
Taibah University for Science 13 (1), 850–857.
Liu, X.D. and Xu, Y. 2008, 'A novel raw starch digesting
α-amylase from a newly isolated Bacillus sp. YX-1:
Purification and Characterisation', Bioresources
Technology 99, 4315–4320.
Malhotra, R., Noorwez, S. and Satyanarayana, T. 2000,
'Production and partial characterisation of
thermostable and calcium‐independent α‐amylase of
an extreme thermophile Bacillus thermooleovorans
NP54', Letters in Applied Microbiology 31, 378–384.
Miller, G. L. 1959, 'Use of Dinitrosalicylic Acid reagent
for determination of reducing sugar', Analytical
Chemistry 31 (3), 426–428.
Moreno, M. de L., Perez, D. and Garcia, M. T. Mellado, E.
2013, 'Halophilic bacteria as a source of novel
hydrolytic enzymes', Life 3, 38–51.
Moshfegh, M., Shahverdi, A. R., Zarrinni, G. and
Faramarzi, M. A. 2013, 'Biochemical characterisation
of an extracellular polyextremophilic α-amylase from
the halophilic archaeon Halorubrum xingjiangense’,
Extremophiles 17, 677–687.
Reddy, N. S., Nimmagadda, A. and Rao, K.R.S.S. 2003,
'An overview of the microbial α-amylase family',
African Journal of Biotechnology 2 (12), 645–648.
Schwieger, F. and Tebbe, C.C. 1998, 'A New Approach to
Utilise PCR-Single Stranded Conformation