ACKNOWLEDGEMENTS
This work is supported by the Miami University Sen-
ate Committee on Faculty Research (CFR) Faculty
Research Grants Program.
REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M.,
Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V.,
Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2016).
Tensorflow: A system for large-scale machine learn-
ing. In Operating Systems Design and Implementa-
tion, OSDI’16, pages 265–283, Berkeley, CA, USA.
Ammann, P. and Offutt, J. (2016). Introduction to software
testing. Cambridge University Press.
Baumer, B. and Zimbalist, A. (2013). The sabermetric rev-
olution: Assessing the growth of analytics in baseball.
University of Pennsylvania Press.
Bishop, C. M. (2006). Pattern Recognition and Machine
Learning. Springer.
Breuker, D. (2014). Towards model-driven engineering for
big data analytics–an exploratory analysis of domain-
specific languages for machine learning. In Hawaii
International Conference on System Sciences, pages
758–767. IEEE.
Costa, G. B., Huber, M. R., and Saccoman, J. T. (2012).
Reasoning with Sabermetrics: Applying Statistical
Science to Baseball’s Tough Questions. McFarland.
DeLine, R. (2015). Research opportunities for the big data
era of software engineering. In International Work-
shop on Big Data Software Engineering, pages 26–29.
Dem
ˇ
sar, J., Curk, T., Erjavec, A.,
ˇ
Crt Gorup, Ho
ˇ
cevar, T.,
Milutinovi
ˇ
c, M., Mo
ˇ
zina, M., Polajnar, M., Toplak,
M., Stari
ˇ
c, A.,
ˇ
Stajdohar, M., Umek, L.,
ˇ
Zagar, L.,
ˇ
Zbontar, J.,
ˇ
Zitnik, M., and Zupan, B. (2013). Orange:
Data mining toolbox in python. Journal of Machine
Learning Research, 14:2349–2353.
Ganeshapillai, G. and Guttag, J. (2012). Predicting the next
pitch. In Sloan Sports Analytics Conference.
G
´
erard, S., Dumoulin, C., Tessier, P., and Selic, B. (2010).
19 Papyrus: A UML2 tool for domain-specific lan-
guage modeling. In Model-Based Engineering of Em-
bedded Real-Time Systems, pages 361–368. Springer.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA data
mining software: an update. SIGKDD Explorations,
11(1):10–18.
James, B. (1987). The Bill James Baseball Abstract 1987.
Ballantine Books.
Kelleher, J. D., Mac Namee, B., and D’Arcy, A. (2015).
Fundamentals of machine learning for predictive data
analytics: algorithms, worked examples, and case
studies. MIT Press.
Kelly, S. and Tolvanen, J.-P. (2008). Domain-specific mod-
eling: enabling full code generation. John Wiley &
Sons.
Kent, S. (2002). Model driven engineering. In Inter-
national Conference on Integrated Formal Methods,
pages 286–298. Springer.
Kolovos, D. S., Paige, R. F., and Polack, F. A. (2006). The
epsilon object language (eol). In European Confer-
ence on Model Driven Architecture-Foundations and
Applications, pages 128–142. Springer.
Koseler, K. (2018). Realization of Model-Driven En-
gineering for Big Data: A Baseball Analytics Use
Case. Master’s thesis, Miami University, Oxford,
Ohio, USA.
Koseler, K. and Stephan, M. (2017a). Machine learning ap-
plications in baseball: A systematic literature review.
Applied Artificial Intelligence, 31(9-10):745–763.
Koseler, K. and Stephan, M. (2017b). Towards the real-
ization of a DSML for machine learning: A baseball
analytics use case. In International Summer School
on Domain-Specific Modeling Theory and Practice.
https://sc.lib.miamioh.edu/handle/2374.MIA/6224.
Koseler, K. and Stephan, M. (2018). A survey of base-
ball machine learning: A technical report. Techni-
cal Report MU-CEC-CSE-2018-001, Department of
Computer Science and Software Engineering, Mi-
ami University. https://sc.lib.miamioh.edu/handle/
2374.MIA/6218.
Lewis, M. (2004). Moneyball: The art of winning an unfair
game. WW Norton & Company.
Mattson, M. P. (2014). Superior pattern processing is the
essence of the evolved human brain. Frontiers in neu-
roscience, 8.
Minka, T. P. (2001). Expectation propagation for approxi-
mate bayesian inference. In Uncertainty in Artificial
Intelligence, pages 362–369, San Francisco, USA.
Portugal, I., Alencar, P., and Cowan, D. (2016). A pre-
liminary survey on domain-specific languages for ma-
chine learning in big data. In SWSTE, pages 108–110.
Russell, S. J. and Norvig, P. (2003). Artificial Intelligence:
A Modern Approach. Pearson Education, 2 edition.
Sawchik, T. (2015). Big Data Baseball: Math, Miracles,
and the End of a 20-Year Losing Streak. Macmillan.
Smola, A. and Vishwanathan, S. (2008). Introduction to
Machine Learning. Cambridge University Press.
Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016).
Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann.
Zafar, M. N., Azam, F., Rehman, S., and Anwar, M. W.
(2017). A systematic review of big data analytics us-
ing model driven engineering. In International Con-
ference on Cloud and Big Data Computing, pages 1–
5.
Zimmerman, A. (2012). Can retailers halt ’showrooming’.
The Wall Street Journal, 259:B1–B8.
MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development
24