Gurobi Optimization (2013). Gurobi optimizer reference
manual. http://www.gurobi.com.
Hamburg, M. (2017). Cryptanalysis of 22
1
2
rounds of
Gimli. Cryptology ePrint Archive, Report 2017/743.
https://eprint.iacr.org/2017/743.
Knudsen, L. R. and Wagner, D. A. (2002). Integral crypt-
analysis. In Fast Software Encryption, 9th Interna-
tional Workshop, FSE 2002, Leuven, Belgium, Febru-
ary 4-6, 2002, Revised Papers, pages 112–127.
Mouha, N., Mennink, B., Herrewege, A. V., Watanabe, D.,
Preneel, B., and Verbauwhede, I. (2014). Chaskey:
An efficient MAC algorithm for 32-bit microcon-
trollers. In Selected Areas in Cryptography - SAC
2014 - 21st International Conference, Montreal, QC,
Canada, August 14-15, 2014, Revised Selected Pa-
pers, pages 306–323.
Mouha, N., Wang, Q., Gu, D., and Preneel, B. (2012). Dif-
ferential and linear cryptanalysis using mixed-integer
linear programming. In Information Security and
Cryptology –ISC 2012, pages 57–76. Springer.
Sasaki, Y. and Todo, Y. (2017). New impossible differen-
tial search tool from design and cryptanalysis aspects
- revealing structural properties of several ciphers.
In Advances in Cryptology - EUROCRYPT 2017 -
36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part III,
pages 185–215.
Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., and Hu, L.
(2018). Programming the demirci-selc¸uk meet-in-the-
middle attack with constraints. In Advances in Cryp-
tology - ASIACRYPT 2018 - 24th International Con-
ference on the Theory and Application of Cryptology
and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part II, pages 3–
34.
Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., and Song, L.
(2014). Automatic security evaluation and (related-
key) differential characteristic search: Application to
simon, present, lblock, DES(L) and other bit-oriented
block ciphers. In Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Informa-
tion Security, Kaoshiung, Taiwan, R.O.C., December
7-11, 2014. Proceedings, Part I, pages 158–178.
Todo, Y. (2015). Structural evaluation by generalized in-
tegral property. In Advances in Cryptology - EU-
ROCRYPT 2015 - 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Pro-
ceedings, Part I, pages 287–314.
Todo, Y., Isobe, T., Hao, Y., and Meier, W. (2017). Cube
attacks on non-blackbox polynomials based on divi-
sion property. In Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part III, pages 250–279.
Todo, Y. and Morii, M. (2016). Bit-based division prop-
erty and application to SIMON family. In Fast
Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, pages 357–377.
Xiang, Z., Zhang, W., Bao, Z., and Lin, D. (2016). Apply-
ing MILP method to searching integral distinguishers
based on division property for 6 lightweight block ci-
phers. In Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and
Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, pages 648–678.
APPENDIX
Algorithm 2: The reversed GIMLI permutation
Input: s = (s
i, j
) ∈ W
3×4
Output: GIMLI
−1
(s) = ( ˜s
i, j
) ∈ W
3×4
1 for r from 24 downto 1 inclusive do
2 if r mod 4 = 0 then
3 s
0,0
= s
0,0
⊕ 0x9e377900 ⊕ r
4 end
5 if r mod 4 = 0 then
6 s
0,0
,s
0,1
,s
0,2
,s
0,3
← s
0,1
,s
0,0
,s
0,3
,s
0,2
7 else if r mod 4 = 2 then
8 s
0,0
,s
0,1
,s
0,2
,s
0,3
← s
0,2
,s
0,3
,s
0,0
,s
0,1
9 end
10
11 for j ∈ {0, · · · , 3} do
12 ˜s
0, j,0
← s
2, j,0
13 ˜s
1, j,0
← s
1, j,0
⊕ ˜s
0, j,0
14 ˜s
2, j,0
← s
0, j,0
⊕ ˜s
1, j,0
15 ˜s
0, j,1
← s
2, j,1
⊕ ˜s
2, j,0
16 ˜s
1, j,1
← s
1, j,1
⊕ ˜s
0, j,1
⊕ (˜s
2, j,0
∨ ˜s
0, j,0
)
17 ˜s
2, j,1
← s
0, j,1
⊕ ˜s
1, j,1
18 ˜s
0, j,2
← s
2, j,2
⊕ ˜s
2, j,1
⊕ (˜s
1, j,0
∧ ˜s
2, j,0
)
19 ˜s
1, j,2
← s
1, j,2
⊕ ˜s
0, j,2
⊕ (˜s
2, j,1
∨ ˜s
0, j,1
)
20 ˜s
2, j,2
← s
0, j,2
⊕ ˜s
1, j,2
21
22 for k ∈ {3,··· , 31} do
23 ˜s
0, j,k
← s
2, j,k
⊕ ˜s
2, j,k−1
⊕ (˜s
1, j,k−2
∧
˜s
2, j,k−2
)
24 ˜s
1, j,k
←
s
1, j,k
⊕ ˜s
0, j,k
⊕ (˜s
2, j,k−1
∨ ˜s
0, j,k−1
)
25 ˜s
2, j,k
←
s
0, j,k
⊕ ˜s
1, j,k
⊕ (˜s
0, j,k−3
∧ ˜s
1, j,k−3
)
26 end
27
28 ˜s
0, j
← ˜s
0, j
≪ −24
29 ˜s
1, j
← ˜s
1, j
≪ −9
30 end
31 end
32 return (˜s
i, j
)
Zero-sum Distinguishers for Round-reduced GIMLI Permutation
43