simply use DenseNet-121 in GCN-DenseNet to
achieve the mIoU score better than GCN-ResNet,
which use ResNet-152 as the encoder network. It
shows that concatenation architecture is more
suitable than identity mapping architecture for
semantic segmentation.
REFERENCES
Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012.
ImageNet classification with deep convolutional
neural networks. In Conference on Neural Information
Processing Systems, pp. 1097-1105.
Simonyan, K., Zisserman, A., 2014. Very deep
convolutional networks for large-scale image
recognition. In arXiv preprint arXiv: 1409.1556.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich,
A., 2015. Going deeper with convolutions. In IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 1-9.
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770-
778.
Huang, G., Liu, Z., Maaten, L. van der, Weinberger, K.
Q., 2017. Densely connected convolutional networks.
In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2261-2269.
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Li, F. F.,
2009. ImageNet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 248-255.
Lin, T. Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L.,
Dollár, P., 2014. Microsoft COCO: Common objects
in context. In European Conference on Computer
Vision, pp. 740-755.
Krizhevsky, A., Hinton, G. E., 2009. Learning multiple
layers of features from tiny images. In Tech Report,
University of Toronto.
Long, J., Shelhamer, E., Darrell, T., 2015. Fully
convolutional networks for semantic segmentation. In
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431-3440.
Lin, G, Milan, A., Shen, C., Reid, I., 2017. RefineNet:
Multi-path refinement networks for high-resolution
semantic segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5168-
5177.
Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J., 2017. Large
kernel matters -- Improve semantic segmentation by
global convolutional network. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1743-
1751.
Jégou, S., Drozdzal, M., Vazquez, D., Romero, A.,
Bengio, Y., 2017. The one hundred layers tiramisu:
Fully convolutional DenseNets for semantic
segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1175-1183.
Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J.,
Zisserman, A., 2010. The PASCAL visual object
classes (VOC) challenge. In International journal of
computer vision, pp. 303-338.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T.,
Enzweiler, M., Benenson, R., Franke, U., Roth, S.,
Schiele, B., 2016. The cityscapes dataset for semantic
urban scene understanding. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3213-
3223.
Brostow, G. J., Shotton, J., Fauqueur, J., Cipolla, R., 2008.
Segmentation and recognition using structure from
motion point clouds. In European Conference on
Computer Vision, pp. 44-57.
Chen, L. C., Yang, Y., Wang, J., Xu, W., Yuille, A. L.,
2016. Attention to scale: Scale-aware semantic image
segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3640-3649.
Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K.,
Yuille, A. L., 2018. DeepLab: Semantic image
segmentation with deep convolutional nets, atrous
convolution, and fully connected CRFs. In IEEE
Transactions on Pattern Analysis and Machine
Intelligence, pp. 834-848.
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid
scene parsing network. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2881-
2891.
Ioffe, S., Szegedy, C., 2015. Batch normalization:
Accelerating deep network training by reducing
internal covariate shift. In International Conference on
Machine Learning, pp. 448-456.
Nair, V., Hinton, G. E., 2010. Rectified linear units
improve restricted boltzmann machines. In
International Conference on Machine Learning, pp.
807-814.
Noh, H., Hong, S., Han, B., 2015. Learning deconvolution
network for semantic segmentation. In Proceedings of
the IEEE International Conference on Computer
Vision, pp. 1520-1528.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer,
A., 2017. Automatic differentiation in PyTorch.
He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep
into rectifiers: Surpassing human-level performance
on ImageNet classification. In Proceedings of the
IEEE International Conference on Computer Vision,
pp. 1026-1034.
Kingma, D. P., Ba, J. L., 2014. Adam: A method for
stochastic optimization. In arXiv preprint
arXiv:1412.6980.
Semantic Segmentation via Global Convolutional Network and Concatenated Feature Maps
297