Cheng, D., Gong, Y., Zhou, S., Wang, J., and Zheng,
N. (2016). Person re-identification by multi-channel
parts-based cnn with improved triplet loss function.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1335–1344.
Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pages 886–893.
IEEE.
Das, A., Chakraborty, A., and Roy-Chowdhury, A. K.
(2014). Consistent re-identification in a camera net-
work. In European Conference on Computer Vision,
pages 330–345. Springer.
Ding, S., Lin, L., Wang, G., and Chao, H. (2015). Deep
feature learning with relative distance comparison
for person re-identification. Pattern Recognition,
48(10):2993–3003.
Farenzena, M., Bazzani, L., Perina, A., Murino, V., and
Cristani, M. (2010). Person re-identification by
symmetry-driven accumulation of local features. In
Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 2360–2367. IEEE.
Gong, S., Cristani, M., Yan, S., and Loy, C. C. (2014). Per-
son re-identification, volume 1. Springer.
Gray, D., Brennan, S., and Tao, H. (2007). Evaluat-
ing appearance models for recognition, reacquisition,
and tracking. In Proc. IEEE International Workshop
on Performance Evaluation for Tracking and Surveil-
lance (PETS), volume 3. Citeseer.
Gray, D. and Tao, H. (2008). Viewpoint invariant pedestrian
recognition with an ensemble of localized features. In
European conference on computer vision, pages 262–
275. Springer.
Gray, R. (1984). Vector quantization. IEEE Assp Magazine,
1(2):4–29.
Hirzer, M., Roth, P. M., K
¨
ostinger, M., and Bischof, H.
(2012). Relaxed pairwise learned metric for person re-
identification. In European Conference on Computer
Vision, pages 780–793. Springer.
Huang, S., Lu, J., Zhou, J., and Jain, A. K. (2015). Nonlin-
ear local metric learning for person re-identification.
arXiv preprint arXiv:1511.05169.
Jegou, H., Douze, M., and Schmid, C. (2008). Hamming
embedding and weak geometric consistency for large
scale image search. In European conference on com-
puter vision, pages 304–317. Springer.
Jose, C. and Fleuret, F. (2016). Scalable metric learning
via weighted approximate rank component analysis.
arXiv preprint arXiv:1603.00370.
K
¨
ostinger, M., Hirzer, M., Wohlhart, P., Roth, P. M., and
Bischof, H. (2012). Large scale metric learning from
equivalence constraints. In Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference on,
pages 2288–2295. IEEE.
Li, W., Zhao, R., Xiao, T., and Wang, X. (2014). Deep-
reid: Deep filter pairing neural network for person re-
identification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
152–159.
Li, Z., Chang, S., Liang, F., Huang, T. S., Cao, L., and
Smith, J. R. (2013). Learning locally-adaptive deci-
sion functions for person verification. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3610–3617.
Liao, S., Hu, Y., Zhu, X., and Li, S. Z. (2015). Person re-
identification by local maximal occurrence represen-
tation and metric learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 2197–2206.
Liao, S. and Li, S. Z. (2015). Efficient psd con-
strained asymmetric metric learning for person re-
identification. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 3685–
3693.
Liao, S., Zhao, G., Kellokumpu, V., Pietik
¨
ainen, M., and Li,
S. Z. (2010). Modeling pixel process with scale invari-
ant local patterns for background subtraction in com-
plex scenes. In Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on, pages 1301–
1306. IEEE.
Liu, H., Feng, J., Qi, M., Jiang, J., and Yan, S. (2016a).
End-to-end comparative attention networks for person
re-identification. arXiv preprint arXiv:1606.04404.
Liu, J., Zha, Z.-J., Tian, Q., Liu, D., Yao, T., Ling, Q., and
Mei, T. (2016b). Multi-scale triplet cnn for person re-
identification. In Proceedings of the 2016 ACM on
Multimedia Conference, pages 192–196. ACM.
Liu, X., Song, M., Tao, D., Zhou, X., Chen, C., and Bu,
J. (2014). Semi-supervised coupled dictionary learn-
ing for person re-identification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3550–3557.
Lu, T. and Shengjin, W. (2015). Person re-identification
as image retrieval using bag of ensemble colors. IE-
ICE TRANSACTIONS on Information and Systems,
98(1):180–188.
Luo, P., Wang, X., and Tang, X. (2013). Pedestrian parsing
via deep decompositional network. In Proceedings of
the IEEE International Conference on Computer Vi-
sion, pages 2648–2655.
Martinel, N., Das, A., Micheloni, C., and Roy-Chowdhury,
A. K. (2016). Temporal model adaptation for person
re-identification. In European Conference on Com-
puter Vision, pages 858–877. Springer.
Ojala, T., Pietik
¨
ainen, M., and Harwood, D. (1996). A com-
parative study of texture measures with classification
based on featured distributions. Pattern recognition,
29(1):51–59.
Paisitkriangkrai, S., Shen, C., and van den Hengel, A.
(2015). Learning to rank in person re-identification
with metric ensembles. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1846–1855.
Pedagadi, S., Orwell, J., Velastin, S., and Boghossian, B.
(2013). Local fisher discriminant analysis for pedes-
trian re-identification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 3318–3325.
Metric Learning in Codebook Generation of Bag-of-Words for Person Re-identification
305