Figure 6: Example of evolution of symmetric solitons for
λ = 0.1, m = 0.2 (a) stable Type 1 symmetric soliton for ω =
0.84, η = 0.01 and (b) unstable Type 2 symmetric soliton
for ω = −0.30, η = 0.39.
0 0.2 0.4 0.6 0.8 1
η
-0.9
-0.6
-0.3
0
0.3
0.6
0.9
ω
Stable (T1)
Unstable (T1)
Stable (T2)
Unstable (T2)
Stable (T1) (Symmetric)
Figure 7: Stability diagram of asymmetric quiescent soli-
tons for m = 0.2, λ = 0.1. The dashed curve is the border
between Type 1 (T1) and Type 2 (T2) soliton families.
tons exist in each family.
We have conducted a numerical stability analy-
sis for symmetric and asymmetric Type 1 and Type
2 solitons. It is found that symmetric Type 2 solitons
are always unstable. For asymmetric solitons, the re-
sults of the stability analysis show that the presence
of dispersive reflectivity has a stabilizing effect.
REFERENCES
Aceves, A. and Wabnitz, S. (1989). Self-induced trans-
parency solitons in nonlinear refractive periodic me-
dia. Phys. Lett. A, 141(1):37 – 42.
Atai, J. and Chen, Y. (1992). Nonlinear couplers composed
of different nonlinear cores. J. Appl. Phys., 72:24–27.
Atai, J. and Chen, Y. (1993). Nonlinear mismatches be-
tween two cores of saturable nonlinear couplers. IEEE
J. Quant. Elec., 29:242–249.
Atai, J. and Malomed, B. A. (2001). Families of bragg-
grating solitons in a cubic-quintic medium. Phys. Lett.
A, 284(6):247 – 252.
Atai, J. and Malomed, B. A. (2005). Gap solitons in bragg
gratings with dispersive reflectivity. Physics Letters A,
342(5):404 – 412.
Barashenkov, I. V., Pelinovsky, D. E., and Zemlyanaya,
E. V. (1998). Vibrations and oscillatory instabilities
of gap solitons. Phys. Rev. Lett., 80:5117–5120.
Baratali, B. H. and Atai, J. (2012). Gap solitons in dual-core
Bragg gratings with dispersive reflectivity. J. Opt.,
14(6):065202.
Bertolotti, M., Monaco, M., and Sibilia, C. (1995). Role of
the asymmetry in a third-order nonlinear directional
coupler. Opt. Comm., 116:405–410.
Chen, Y. and Atai, J. (1995). Polarization instabilities in
birefringent fibers: A comparison between continuous
waves and solitons. Phys. Rev. E , 52:3102–3105.
Chen, Y. and Atai, J. (1998). Stability of fundamental soli-
tons of coupled nonlinear schrdinger equations. Opt.
Comm., 150:381 – 389.
Christadoulides, D. N. and Joseph, R. I. (1989). Slow Bragg
solitons in nonlinear periodic structures. Phys. Rev.
Lett., 62:1746–1749.
Dasanayaka, S. and Atai, J. (2010). Stability of Bragg grat-
ing solitons in a cubic-quintic nonlinear medium with
dispersive reflectivity. Phys. Lett. A, 375(2):225 – 229.
de Sterke, C. M. and Sipe, J. E. (1994). Gap Solitons. Prog.
Opt., 33:203–260.
Eggleton, B. J., de Sterke, C. M., and Slusher, R. E. (1997).
Nonlinear pulse propagation in bragg gratings. J. Opt.
Soc. Am. B, 14(11):2980–2993.
Islam, M. J. and Atai, J. (2015). Stability of gap solitons
in dual-core bragg gratings with cubic-quintic nonlin-
earity. Laser Phys. Lett., 12(1):015401.
Krauss, T. F. (2008). Why do we need slow light? Nature
Photon., 2:448–450.
Mak, W. C. K., Chu, P. L., and Malomed, B. A. (1998a).
Solitary waves in coupled nonlinear waveguides with
Bragg gratings. J. Opt. Soc. Am. B, 15(6):1685–1692.
Mak, W. C. K., Malomed, and Chu, P. L. (1998b).
Asymmetric solitons in coupled second-harmonic-
generating waveguides. Phys. Rev. E, 57:1092–1103.
Mandelik, D., Morandotti, R., Aitchison, J. S., and Silber-
berg, Y. (2004). Gap solitons in waveguide arrays.
Phys. Rev. Lett., 92:093904.
Monat, C., de Sterke, M., and Eggleton, B. J. (2010). Slow
light enhanced nonlinear optics in periodic structures.
J. Opt., 12:104003.
Neill, D. R. and Atai, J. (2007). Gap solitons in a hollow
optical fiber in the normal dispersion regime. Phys.
Lett. A, 367:73–82.
Nistazakis, H. E., Frantzeskakis, D. J., Atai, J., Malomed,
B. A., Efremidis, N., and Hizanidis, K. (2002). Mul-
tichannel pulse dynamics in a stabilized ginzburg-
landau system. Phys. Rev. E, 65:036605.
Russell, P. S. J. (1991). Bloch wave analysis of disper-
sion and pulse propagation in pure distributed feed-
back structures. J. Mod. Opt., 38(8):1599–1619.
Sipe, J. E. (1992). Gap Solitons, pages 305–318. Springer
Netherlands, Dordrecht.
Sipe, J. E. and Winful, H. G. (1988). Nonlinear schr
¨
odinger
solitons in a periodic structure. Opt. Lett., 13(2):132–
133.
PHOTOPTICS 2019 - 7th International Conference on Photonics, Optics and Laser Technology
22