step would be to provide a name).
The findings indicate technology is ready to im-
plement conversational agents for insurance customer
service scenarios. However, as real-life scenarios are
broader than the example scenario, considerably more
effort is necessary to design the dialogs. One area not
covered by the prototype is human handover in case
the conversational agent cannot complete and interac-
tion to the user’s satisfaction.
Data protection and privacy remain open areas for
research. Legal and practical questions regarding data
collection, storage and processing must be worked
on alongside technical requirements, as they tend to
be complex and have limited precedent (Smart-Data-
Begleitforschung, 2018).
In future research, we would like to extend the
prototype to different scenarios as well as perform a
real-life evaluation with an insurance partner to quan-
tify the benefits of agent use, e.g. call reduction, suc-
cess rate, and customer satisfaction.
REFERENCES
Aschenbrenner, M., Dicke, R., Karnarski, B., and Schweig-
gert, F. (2010). Informationsverarbeitung in Ver-
sicherungsunternehmen. Springer.
Cahn, J. (2017). Chatbot: Architecture, design, & develop-
ment.
Carpenter, R. (2018). Cleverbot.
https://www.cleverbot.com/.
Chu, S.-W., O’Neill, I., Hanna, P., and McTear, M. (2005).
An approach to multi-strategy dialogue management.
In Ninth European Conference on Speech Communi-
cation and Technology, pages 865–868.
Cooper, R. S., McElroy, J. F., Rolandi, W., Sanders, D.,
Ulmer, R. M., and Peebles, E. (2008). Personal virtual
assistant. US Patent 7,415,100.
Dale, R. (2016). Industry watch: The return of the chatbots.
Natural Language Engineering, 22(5):811–817.
Davydova, O. (2017). 25 chatbot platforms: A compar-
ative table. https://chatbotsjournal.com/25-chatbot-
platforms-a-comparative-table-aeefc932eaff.
Derler, R. (2017). Chatbot vs. app vs. website chatbots
magazine. https://chatbotsmagazine.com/chatbot-vs-
app-vs-website-en-e0027e46c983.
Eeuwen, M. (2017). Mobile conversational commerce:
messenger chatbots as the next interface between busi-
nesses and consumers. Master’s thesis, University of
Twente.
Fannin, T. and Brower, B. (2017). 2017 future of claims
study. Technical report, LexisNexis.
Gartner (2015). Market trends: Mobile
app adoption matures as usage mellows.
https://www.gartner.com/newsroom/id/3018618.
GDV (2012). Verhaltensregeln f
¨
ur den Umgang mit
personenbezogenen Daten durch die deutsche
Versicherungswirtschaft. http://www.gdv.de/wp-
content/uploads/2013/03/GDV Code-of-
Conduct Datenschutz 2012.pdf. Datum des Aufrufes
des Dokumentes: 11.02.2015.
Gorr, D. (2018). Ein Versicherungsroboter f
¨
ur
gewisse Stunden. Versicherungswirtschaft
Heute. http://versicherungswirtschaft-
heute.de/schlaglicht/ein-versicherungsroboter-fur-
gewisse-stunden/.
Guzmn, I. and Pathania, A. (2016). Chatbots in customer
service. Technical report, Accenture.
Harkous, H., Fawaz, K., Shin, K. G., and Aberer, K. (2016).
Pribots: Conversational privacy with chatbots. In
Twelfth Symposium on Usable Privacy and Security
(SOUPS 2016), Denver, CO. USENIX Association.
Horch, A., Kintz, M., Koetter, F., Renner, T., Weidmann,
M., and Ziegler, C. (2012). Projekt openXchange:
Servicenetzwerk zur effizienten Abwicklung und Opti-
mierung von Regulierungsprozessen bei Sachsch
¨
aden.
Fraunhofer Verlag, Stuttgart.
Inc, S. (2018). Most popular messaging apps 2018.
https://www.statista.com/statistics/258749/most-
popular-global-mobile-messenger-apps/.
Kamarinou, D., Millard, C., and Singh, J. (2016). Machine
learning with personal data. Queen Mary School of
Law Legal Studies Research Paper, (247).
Kirakowski, J., O’Donnell, P., and Yiu, A. (2009). Estab-
lishing the hallmarks of a convincing chatbot-human
dialogue. In Maurtua, I., editor, Human-Computer In-
teraction, chapter 09. InTech, Rijeka.
Koetter, F., Weisbecker, A., and Renner, T. (2012). Busi-
ness process optimization in cross-company service
networks: architecture and maturity model. In SRII
Global Conference (SRII), 2012 Annual, pages 715–
724. IEEE.
Kowatsch, T., Nißen, M., Shih, C.-H. I., R
¨
uegger, D., Vol-
land, D., Filler, A., K
¨
unzler, F., Barata, F., Hung, S.,
B
¨
uchter, D., et al. (2017). Text-based healthcare chat-
bots supporting patient and health professional teams:
Preliminary results of a randomized controlled trial on
childhood obesity. In Persuasive Embodied Agents for
Behavior Change (PEACH2017). ETH Zurich.
McTear, M., Callejas, Z., and Griol, D. (2016). The Con-
versational Interface, volume 6. Springer.
Newlands, M. (2017). 10 ways ai
and chatbots reduce business risks.
https://www.entrepreneur.com/article/305073.
Nguyen, A. and Wobcke, W. (2005). An agent-based ap-
proach to dialogue management in personal assistants.
In Proceedings of the 10th international conference on
Intelligent user interfaces, pages 137–144. ACM.
Niddam, M., Barsley, N., Gard, J.-C., and Cotro-
neo, U. (2014). Evolution and revolution:
How insurers stay relevant in a digital future.
https://www.bcg.com/publications/2014/insurance-
technology-strategy-evolution-revolution-how-
insurers-stay-relevant-digital-world.aspx.
Nordman, E., DeFrain, K., Hall, S. N., Karapiperis, D., and
Obersteadt, A. (2017). How artificial intelligence is
changing the insurance industry.
Motivations, Classification and Model Trial of Conversational Agents for Insurance Companies
29