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Abstract: The aim of this research was to demonstrate the suitability of a data-driven approach to identify the sphero-

cylindrical subjective refraction. An artificial deep learning network with two hidden layers was trained to 

predict power vector refraction (M, J0 and J45) from 37 dimensional feature vectors (36 Zernike coefficients 

+ pupil diameter) from a large database of 50,000 eyes. A smaller database of 460 eyes containing subjective 

and objective refraction from controlled experiment conditions was used to test for prediction power. Bland-

Altmann analysis was performed, calculating the mean difference (eg ΔM) and the 95% confidence interval 

(CI) between predictions and subjective refraction. Using the machine learning approach, the accuracy          

(ΔM = +0.08D) and precision (CI for ΔM = ± 0.78D) for the prediction of refractive error corrections was 

comparable to a conventional metric (ΔM = +0.11D ± 0.89D) as well as the inter-examiner agreement between 

optometrists (ΔM = -0.05D ± 0.63D). To conclude, the proposed deep learning network for the prediction of 

refractive error corrections showed its suitability to reliably predict subjective power vectors of refraction 

from objective wavefront data. 

1 INTRODUCTION 

The current gold standard for the measurement of 

refractive errors of the eye is the subjective refraction 

that aims to correct the lower aberrations of the eye in 

order to provide the best retinal image quality (Goss 

and Grosvenor, 1996). The intra-examiner agreement 

which is defined as the agreement between different 

measurements of the refractive error by the same 

examiner, as well as the agreement between the 

subjective correction from multiple examiners (inter-

examiner agreement) are in the range between 

±0.25D (80%) and ±0.50D (95%) (Goss and 

Grosvenor, 1996). The subjective ability to judge the 

level of focus depends on the depth of focus of the 

eye, which is known to be around ±0.30D (Leube        

et al. 2016) and higher order aberrations whose 

influence is modulated by the size of the pupil (Wang 

et al. 2003). Other factors that can affect the 

successful computation of subjective corrections is 

the ability of the visual system to easily adapt to blur 

and contrast. For example, it is well known that the 

eye is adapted to its own aberrations and can easily 
                                                           
* Both authors contributed equally to this work.  

adapt to spherical as well as astigmatic defocus (Artal 

et al., 2004; Ohlendorf and Schaeffel, 2009; 

Ohlendorf et al., 2011).  

Pioneered by Applegate, Williams, Thibos and 

others, computational attempts have been made in 

order to predict the refractive correction of sphere, 

cylinder and its axis from the monochromatic lower 

and higher order aberrations of the eye, using image 

quality metrics (Applegate et al. 2003; Guirao and 

Williams 2003; Thibos et al. 2002; Thibos et al. 

2004a). In general, one can distinguish between 

pupil-plane metrics that are used to optimize the 

wavefront aberrations of the eye and image-plane 

metrics, which are used to maximize the quality of the 

retinal image in relation to the subjective best image 

quality (Guirao and Williams, 2003). While 

comparing pupil-plane as well as image-plane metrics 

to the subjectively best correction of refractive errors 

in a cohort of 147 eyes, Guirao and Williams (2003) 

concluded that image-plane metrics are the better 

choice to predict the subjective refraction. In support 

to this findings, Thibos et al. (2004) extended the use 

of pupil-plane metrics as well as image-plane metrics 
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and presented 33 different metrics. Their accuracy 

(defined by the mean error of the prediction) as well 

as precision (equivalent to the 95% limits of 

agreement) to predict the subjective refraction in a 

population of 200 eyes was shown previously (Thibos 

et al. 2004). The range of the mean difference for the 

estimated spherical defocus was reported to be 

between -0.50D and +0.25D for all metrics, while the 

limits of agreement (LoA) ranged from ±0.50D to 

±1.00D. 

The mapping from detailed, high-dimensional 

measurements of low- to high-order aberration errors 

to the best possible subjective refraction correction 

includes both, optical and neural factors that are 

difficult to assess with detailed physical models. 

Using a training set of paired objective and subjective 

measurements, the task of predicting the optimal 

subjective correction from an objective measurement 

is essentially a (non-linear) regression problem. 

While using for example a deep learning network in 

order to allow enough space for a flexible function, 

the prediction of refractive corrections should be 

learnable from data. Further, it should perform at least 

as good as detailed physical models, while the former 

does not require the detailed mechanistic knowledge 

of the latter. Additionally and by construction, such a 

regressor inherently captures optical and neural 

factors, while it is assumed that these are consistent 

across subjects. The aim of the current research was 

to explore the applicability of machine learning 

approaches for the prediction of the sphero-

cylindrical correction of refractive errors and 

compare their performance (in terms of accuracy and 

precision) against currently used objective metrics 

and subjective measurements. 

2 METHODS 

2.1 Datasets 

Three datasets were used: (1) An excerpt from a data 

base of spectacle lens orders (provided by Carl Zeiss 

Vision GmbH, Aalen, Germany) that included 

monocular data from 50,496 eyes, measured by 

various professional optometrists. Each eye in this 

database was characterized by its aberrometry data 

and pupil size measured with a wavefront 

aberrometer (i.Profiler 1, Carl Zeiss Vision GmbH, 

Aalen, Germany) and a subjective measurement of its 

refractive errors. Aberrometry data were assessed up 

to the 7th radial order and included refractive data 

such as the spherical equivalent M from -16.00D to 

+9.00D with a mean of -0.85 ± 2.67D. This large data 

set was divided into a training set (32,316 samples, 

coined ZV train), a developing set (8,080 samples, 

coined ZV develop) and a testing set (10,100 samples, 

coined ZV test). (2) A second set of monocular data 

was collected independently for research purposes 

with a Subjective Refraction Unit (SRU) and the 

wavefront aberrometer (i.Profiler plus, Carl Zeiss 

Vision GmbH, Aalen, Germnay) from 460 eyes 

(Ohlendorf, Leube and Wahl 2016). The SRU 

included a digital phoropter (ZEISS Visuphor 500, 

Carl Zeiss Vision GmbH, Aalen, Germany) and a 

LCD-screen to display optotypes (ZEISS Visuscreen 

500, Carl Zeiss Vision GmbH, Aalen, Germany) with 

a minimum luminance of L = 250cd/m2. SLOAN 

letters were used as optotypes and were shown in an 

EDTRS layout (Sloan, 1959; National Eye Institute, 

1991). This dataset was used exclusively for testing 

purposes (simply called EagleEye) to discriminate 

against ZV test. (3) A third dataset was used to 

examine the inter-examiner agreement of monocular 

subjective refractions in a group of 54 eyes, measured 

by two of the authors both using the standardized 

procedure. 

2.2 Machine Learning Methodology 

An artificial deep learning network was used to 

compute the best correction of the power vectors of 

the refractive errors for a given set of low- and high-

order aberrations of an eye. Therefore, the target 

values t drawn out of the power vector entries {M, J0, 

J45} were predicted by using the set of Zernike 

coefficients together with the pupil diameter as input 

features for any given eye. Every eye was hence 

objectively characterized by concatenating these 

features into a vector 𝑥 ∈ ℝ37. The non-linear 

function 𝑦 = 𝑓(𝑥, 𝜃) to predict the subjectively 

assigned value 𝑡 was learned by using the respective 

target values from the training data set (ZV train, 

32,316 samples): The networks' trainable parameters 

θ were learned by backpropagating the errors between 

predictions and target values. The separate 

development set of data (ZV develop, 8,080 samples) 

was used to determine all necessary hyperparameters 

such as the network architecture described further 

below. The two separate and independent test data 

sets where then used to report final performance for 

the sub data set ZV test that constituted a non-

overlapping split from the same database used for 

training that was comprised of 10,100 samples. 
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2.3 Model Development 

In principle, any (non)-linear regression model that 

fits the training data and generalizes to unseen test 

data is conceivable. Here, we chose deep learning 

networks because their effective capacity can be 

tuned flexibly to the problem at hand. Initial 

experiments (data not shown) ruled out a simple 

linear model and Bayesian hyperparameter 

optimization using hyperopt, suggested a similar 

model to the one developed here by using current best 

principles (Bergstra et al. 2013; Goodfellow, et al. 

2016; Shahriari et al., 2016). More specifically, 

development converged to using multi-layered 

feedforward networks with a single linear output unit 

to jointly learn the basis functions and predictions by 

minimizing the mean squared error 1/N ΣN(y-t)2 

between predicted and subjectively assigned sphero-

cylindrical corrections. We trained three networks in 

total, one each for M, J0 and J45 respectively. Every 

network had two hidden layers, with 64 hidden units 

each and parametric rectifier nonlinearities (He et al., 

2015). Initial weights were drawn from a zero-mean 

Gaussian with a standard deviation of √2/n with n the 

number of incoming connections (He et al., 2015). All 

data were preprocessed by subtracting the mean of 

each feature dimension calculated across the training 

set. The network was trained using the Adam 

optimizer with a learning rate of 0.001 which was 

automatically reduced by a factor of 0.2 whenever the 

loss on the validation set did not improve for 10 

epochs (passes through the training data) (Kingma 

and Ba, 2015). To avoid overfitting, small network 

weights were encouraged via global L2 regularization 

(λ = 0.02) and randomly dropping 0.2 of the hidden 

units (Bishop, 2006; Hinton et al., 2012; Srivastava et 

al., 2014). Training was performed with a batch size 

of 128 and stopped, when the loss evaluated on the 

validation set did not improve for 50 epochs ("early 

stopping"). 

2.4 Implementation 

The machine learning models were developed in 

Python, using the scientific computing stack and in 

particular the deep learning library keras together 

with tensorflow as backend (Francois, 2016; Girija, 

2016). Network related computations were performed 

on the graphics processing unit (GeForce GTX 1080 

GPU, NVIDIA, Santa Clara, USA). 

Code and models will be publicly available upon 

publication under https://github.com/chleibig 

/airefraction. 

2.5 Validation and Comparison with 
Alternative Methods 

To compare the performance of the machine learning 

approach to (1) existing subjective measurements as 

well as (2) alternative computational approaches and 

(3) to the inter-examiner agreement of subjective 

refractions, the following analysis was performed: 

accuracy and precision in terms of Bland-Altman 

analysis (Bland and Altman, 1986) of the machine 

learning approach was compared to power vectors of 

refraction (Thibos et al. 1997) from (1) subjective 

refractions and (2) computations based corrections 

using the visual Strehl of the optical transfer function 

(VSOTF) (Thibos et al., 2004a), both for the 

described dataset EagleEye. Inter-examiner 

agreement was established for a smaller set of eyes 

(dataset 3, n = 54 eyes) in order to be able to better 

rank the obtained results in the framework of the 

subjective assessment of refractive errors. 

3 RESULTS 

3.1 Testing of the Deep Learning 
Network 

Using the sub dataset ZV train, the deep neuronal 

network was trained and further tested, while using 

the additional sub datasets ZV develop. In a first step, 

the performance in terms of accuracy and precision of 

the deep learning network was assessed, while using 

the data-set ZV test. The results revealed mean 

differences (accuracy) that were around zero for the 

three power vectors (M, J0 and J45), while the 95% 

limits of agreement (precision) were twice as big for 

M as for the cylindrical vector components J0 and J45 

(see Table 1). In a second step, the true generalization 

of the deep learning network was analyzed, while 

using the independent dataset EagleEye and again, 

mean differences were around zero for the three 

power vectors M, J0 and J45, while the 95% limits of 

agreement was higher for M, when compared to J0 

and J45. Since the developed deep learning network 

performed similar on both datasets (ZV test and 

EagleEye), it will be also applicable to data from 

potentially different distributions. 
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Table 1: Mean differences and 95% limits of agreement between computationally and subjectively assessed refraction for the 

power vector components (M, J0 and J45). 

  
Refractive 

component 

Mean difference, 

D (95% CI) 

95% limits of 

agreement, lower, D 

(95% CI) 

95% limits of 

agreement, upper, D 

(95% CI) 

Deep network                         

(ZV test, n = 10100) 

M 0.01 (0.02, 0.01) -0.64 (-0.66, -0.63)  0.67 (0.66, 0.68)  

J0 0.01 (0.01, 0.00) -0.31 (-0.32, -0.30) 0.32 (0.31, 0.33)  

J45  0.00 (0.00, 0.00) -0.28 (-0.29, -0.27) 0.28 (0.27, 0.29) 

Deep network                         

(EagleEye, n = 460) 

M  0.08 (0.12, 0.05) -0.70 (-0.76, -0.63) 0.86 (0.80, 0.92) 

J0 -0.01 (0.00, 0.00)  -0.31 (-0.37, -0.25) 0.28 (0.22, 0.35) 

J45 0.01 (0.02, 0.00) -0.23 (-0.29, -0.17) 0.25 (0.19, 0.31) 

Visual Strehl 

OTF (EagleEye,       

n = 460) 

M 0.11 (0.15, 0.06) -0.78 (-0.86, -0.71) 1.00 (0.92, 1.07)  

J0 -0.02 (0.00, -0.04) -0.40 (-0.47, -0.33)  0.36 (0.29, 0.43) 

J45 0.01 (-0.01, 0.02) -0.27 (-0.34, -0.20) 0.28 (0.21, 0.35) 

Human1 vs. 

Human2 (EagleEye, 

n = 53) 

M -0.05 (-0.13, 0.04) -0.68 (-0.84, -0.53) 0.59 (0.43, 0.74) 

J0 0.01 (-0.02, 0.04) -0.19 (-0.34, -0.04) 0.21 (0.06, 0.36) 

J45 -0.01 (-0.04, 0.01) -0.17 (-0.32, -0.02)  0.14 0.01, 0.29) 

 

3.2 Computation of Refractive Vector 
Components 

To compare the proposed deep learning network 

approach to other computational methods, the three 

vector components of refraction of dataset EagleEye 

were computed using the deep learning network and 

the visual metric VSOTF and judged in respect of 

agreement and precision with the available subjective 

data (Thibos et al. 2004). The deep learning network 

performed similar in terms of agreement and 

precision for all three vector components in 

comparison to the traditional metric (see Table 1). In 

terms of inter-examiner agreement between 

professional optometrists (see Table 1) that was 

calculated from double ratings of the same 

participants from two optometrists in 54 eyes from 

dataset 3, the artificial neural network covers a similar 

range of agreement and precision for all three power 

vectors of refraction. 

4 DISCUSSION 

In the current study, an artificial deep learning 

network approach was used in order to learn the 

complicated transfer from objective to subjective data 

and highly non-linear mapping from objective 

aberrometry data to the subjectively optimal sphero-

cylindrical correction of refractive errors was applied. 

Given the results, the detailed forward modeling of 

optical, neuronal and perceptional contributions to the 

transfer function using a deep learning network is 

comparable to earlier introduced methods (such as 

visual Strehl metrics) and the current gold standard, 

the subjective refraction. 

4.1 Comparison with Conventional 
Computational Metrics 

Compared to various pupil-plane and image quality 

metrics that were developed and applied for equal 

objectives, our results showed similar mean 

differences and comparable 95% limits of agreement, 

when compared to the VSOTF metric (Thibos et al. 

2004). For the prediction of M from 200 eyes, 

different used metrics resulted in a mean difference 

between 0.24D to -0.04D, but were not the best 

ranked regarding their 95% limits of agreement. Best 

results in the precision of the prediction of M was 

shown from two pupil fraction metrics: PFWc and 

PFSc; two image quality metrics for grating objects: 

AreaOTF, the visual Strehl of the optical transfer 

function (VSOTF) and one contrast metric: light-in-

the-bucket (LIB) that all ranged between ± 0.49D to 

± 0.59D (Thibos et al. 2004). Using pupil plane and 

image plane metrics, Guirao et al. (2003) reported a 

mean difference for M of 0.40D, when predicted by 
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the metrics and compared to subjective data of 146 

eyes (95% limit of agreement: ± 0.98D). With respect 

to the 95% limits of agreement, the results of the 

current investigation revealed similar or better values, 

when compared to the best ranked metrics regarding 

the prediction of M by Thibos et al. (2004) as well as 

Guirao et al. (2003). The average mean differences 

for the spherical equivalent refractive error M is much 

lower compared to the typical steps in subjective 

refraction, where errors are corrected in steps of 

0.25D. Therefore, the performance for the prediction 

of the power vector M, J0, J45 of the developed 

artificial deep learning network can be classified as 

excellent, with the advantage over existing 

computational methods that computational time is 

significantly reduced. 

4.2 Agreement with Subjective 
Refraction 

The 95% limits of agreement for the computation of 

M were similar compared to studies that subjectively 

assessed the refractive to test the inter- as well as 

intra-observer agreement. Zadnik et al. (1992) 

reported 95% limit of agreement range from ± 0.94D 

for cycloplegic subjective refraction to ± 0.63D for 

the non-cycloplegic assessment of the spherical 

equivalent refractive error, when refraction was 

assessed by the same examiner multiple times 

(Zadnik et al. 1992). In case of retinoscopy, the 95% 

limits of agreement were reported to be ± 0.95D for 

cycloplegic retinoscopy and ± 0.78D for non-

cycloplegic retinoscopy (Zadnik et al. 1992). 

Bullimore et al. (1993) found a 95% limit of 

agreement regarding the repeatability of the spherical 

equivalent refractive error, measured by two 

optometrists of ± 0.78D with a mean difference of - 

0.12D (Elliott and Bullimore, 1993). Values reported 

by Rosenfield and Chiu (1995) for the 95% limit of 

agreement of the inter-observer variability are               

± 0.29D, when the spherical equivalent refractive 

error was subjectively assessed by the same examiner 

for five times. When findings for the spherical 

equivalent error from the current study are compared 

to the previously reported subjective measures, it can 

be concluded that the presented method is as precise 

and accurate as the current gold standard, the 

subjective refraction. 

4.3 Retinal and Neural Factors 
Affecting Perception 

The question arises, whether a subjective refraction, 

either under monocular or binocular conditions, 

would lead to the optical best correction of the 

aberrations, or if it represents a correction of 

aberrations that is most accepted by the wearer. In 

order to minimize any possible bias, we have only 

analyzed monocular measurements of refractive 

errors and additionally, the subjective refraction 

followed the rule "best visual acuity with maximum 

plus power". Compared to previous studies that were 

conducted in order to predict the best sphero-

cylindrical correction of refractive errors using either 

pupil plane or image plane metrics, our approach, an 

artificial deep learning network that is able to 

incorporate perceptual and neural processes, 

assuming that they are similar over a cohort. Given 

enough capacity from the data, deep learning 

networks are able to learn any function, while 

alternative methods provide design transfer functions 

with possibly limited capacity. These approaches use 

hypotheses and limited domain knowledge about 

optics and the visual system in order to determine the 

best correction of an individual's aberration, with- or 

without the incorporation of for instance the contrast 

sensitivity of the eye. Since the deep learning network 

that was applied, is able to incorporate such 

processes, the network learned the mapping from 

Zernike coefficients to subjectively optimal refractive 

error corrections. 

4.4 Monochromatic Aberrometry vs. 
Polychromatic Subjective 
Refraction 

The prediction of refractive errors based on 

aberrometry data has some shortcomings that have to 

be taken into account. When measuring the refractive 

errors subjectively, a polychromatic test chart (white 

produced out of the red, green and blue LEDs of the 

monitor) is used, while wavefront aberrations are 

measured under monochromatic conditions. 

Following, one has to decide, which wavelength to 

use to compute the objective autrorefraction as well 

as power vectors from aberrometry measurements 

and the results are only valid for the specific single 

wavelength. In the current analysis, the data were 

analyzed for a wavelength of λ = 550nm, based on the 

maximal spectral sensitivity of the eye and this is in 

contradiction to for example Thibos et al., where they 

have used a reference wavelength of λ = 570nm 

(Thibos et al. 2004). Since the obtained results are 

comparable to the data of the subjective refractions, 

we conclude that the chosen wavelength only 

minimally effects the results obtained.  
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5 CONCLUSIONS 

The aim of the current research was to use artificial 

deep learning networks for the prediction of 

subjective refractive corrections, in order to allow for 

an effective description of perceptual and neural 

processes that occur during the subjective assessment 

of such errors. The obtained results have shown that 

the presented methods lead to exact values of the 

power vectors of refraction, when compared to the 

subjective measurement and to a conventional metric. 

Additionally, aberrations need not necessarily be 

described by Zernike coefficients, neither is a detailed 

description more powerful to predict the refractive 

errors. 
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