REFERENCES
Apt, K. R. and Wallace, M. (2006). Constraint Logic Pro-
gramming Using ECLiPSe. Cambridge University
Press, Cambridge.
Arbib, J. and Seba, T. (2017). Rethinking Transporta-
tion 2020-2030: The Disruption of Transportation
and the Collapse of the Internal-Combustion Ve-
hicle and Oil Industries. Retrieved August 30,
2018, from https://www.rethinkx.com/s/RethinkX-
Report 051517.pdf.
Bauchau, O. A., editor (2011). Flexible Multibody Dynam-
ics. Solid Mechanics and Its Applications. Springer
Netherlands, Dordrecht.
Behere, S. and T
¨
orngren, M. (2015). A Functional Archi-
tecture for Autonomous Driving. In Kruchten, P., Da-
jsuren, Y., Altinger, H., and Staron, M., editors, Pro-
ceedings of the First International Workshop on Auto-
motive Software Architecture - WASA ’15, pages 3–10,
New York, New York, USA. ACM Press.
Biran, O. and Cotton, C. (2017). Explanation and
Justification in Machine Learning: A Survey.
In IJCAI-17 Workshop on Explainable AI (XAI)
Proceedings, pages 8–13. Retrieved December
3, 2018, from http://www.intelligentrobots.org/files/
IJCAI2017/IJCAI-17 XAI WS Proceedings.pdf.
Bojarski, M., Yeres, P., Choromanska, A., Choromanski,
K., Firner, B., Jackel, L. D., and Muller, U. (2017).
Explaining How a Deep Neural Network Trained
with End-to-End Learning Steers a Car. CoRR,
abs/1704.07911.
Carlsson, M. (2009). SICStus Prolog User’s Manual:
Release 4.0.8. Retrieved January 21, 2018, from
http://sicstus.sics.se/sicstus/docs/4.0.8/pdf/sicstus.pdf.
Carlsson, M. and Mildner, P. (2012). SICStus Prolog – The
first 25 years. Theory and Practice of Logic Program-
ming, 12(1-2):35–66.
Diaz, D. (2001). Design and Implementation of the GNU
Prolog System. Journal of Functional and Logic Pro-
gramming, 2001(6).
Diaz, D., Abreu, S., and Codognet, P. (2012). On the im-
plementation of GNU Prolog. Theory and Practice of
Logic Programming, 12(1-2):253–282.
Dubey, A. D., Mishra, R. B., and Jha, A. K. (2013). Path
Planning of Mobile Robot using Reinforcement Based
Artificial Neural Network. Int. J. of Advances in En-
gineering & Technology, 6(2):780–788.
Grigorescu, S. M., Glaab, M., and Roßbach, A. (2017).
From logistic regression to self-driving cars:
Chances and challenges of using machine learning
for highly automated driving. Retrieved June 6,
2018, from https://d23rjziej2pu9i.cloudfront.net/wp-
content/uploads/2017/04/12081251/EB
TechPaper
From logistic regression to self driving cars.pdf.
Gu, T. and Dolan, J. M. (2012). On-Road Motion Planning
for Autonomous Vehicles. In Su, C.-Y., Rakheja, S.,
and Liu, H., editors, Intelligent robotics and applica-
tions, volume 7508 of LNAI, pages 588–597. Springer,
Berlin.
Hart, P., Nilsson, N., and Raphael, B. (1968). A Formal Ba-
sis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cy-
bernetics, 4(2):100–107.
ISO (2011). International Standard ISO 26262-6:2011(E):
Road Vehicles - Functional Safety - Part 6: Product
development at the software level.
ITF (2017). ITF Transport Statistics. OECD Publishing.
Kelly, A. and Nagy, B. (2016). Reactive Nonholonomic
Trajectory Generation via Parametric Optimal Con-
trol. The International Journal of Robotics Research,
22(7-8):583–601.
Lever, J. and Richards, B. (1994). parcPlan: A planning
architecture with parallel actions, resources and con-
straints. In Ra
´
s, Z. W., editor, Methodologies for intel-
ligent systems, volume 869 of LNAI, pages 213–222.
Springer, Berlin.
McNaughton, M. (2011). Parallel Algorithms for Real-time
Motion Planning. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA.
Paden, B., Cap, M., Yong, S. Z., Yershov, D., and Frazzoli,
E. (2016). A Survey of Motion Planning and Control
Techniques for Self-Driving Urban Vehicles. IEEE
Transactions on Intelligent Vehicles, 1(1):33–55.
Piaggio, M. and Sgorbissa, A. (2000). Real-Time Mo-
tion Planning in Autonomous Vehicles: A Hybrid Ap-
proach. In Goos, G., Hartmanis, J., van Leeuwen,
J., Lamma, E., and Mello, P., editors, AI*IA 99:
Advances in Artificial Intelligence, volume 1792 of
LNCS, pages 368–378. Springer, Berlin.
Rathgeber, C. (2016). Trajektorienplanung und -
folgeregelung f
¨
ur assistiertes bis hochautomatisiertes
Fahren. PhD thesis, TU Berlin.
Ray, S. (2010). Scalable Techniques for Formal Verifica-
tion. Springer US, Boston, MA.
Werling, M. (2011). Ein neues Konzept f
¨
ur die Tra-
jektoriengenerierung und -stabilisierung in zeitkritis-
chen Verkehrsszenarien, volume 34 of Schriftenreihe
des Instituts f
¨
ur Angewandte Informatik - Automa-
tisierungstechnik, Universit
¨
at Karlsruhe (TH). KIT
Scientific Publishing, Karlsruhe.
Werling, M., Ziegler, J., Kammel, S., and Thrun, S. (2010).
Optimal trajectory generation for dynamic street sce-
narios in a Fren
´
et Frame. In 2010 IEEE International
Conference on Robotics and Automation, pages 987–
993. IEEE.
Wielemaker, J., Schrijvers, T., Triska, M., and Lager, T.
(2012). SWI-Prolog. Theory and Practice of Logic
Programming, 12(1-2):67–96.
Ziegler, J. and Stiller, C. (2009). Spatiotemporal state lat-
tices for fast trajectory planning in dynamic on-road
driving scenarios. In 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
1879–1884, Piscataway, NJ. IEEE.
Zuo, B., Chen, J., Wang, L., and Wang, Y. (2014). A rein-
forcement learning based robotic navigation system.
In 2014 IEEE Int. Conf. on Systems, Man, and Cyber-
netics (SMC), pages 3452–3457. IEEE.
ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence
418