Ding, Y., Yuan, X., Tang, K., Xiao, X., and Zhang, Y.
(2013). A fast malware detection algorithm based on
objective-oriented association mining. computers &
security, 39:315–324.
Elovici, Y., Shabtai, A., Moskovitch, R., Tahan, G., and
Glezer, C. (2007). Applying machine learning techni-
ques for detection of malicious code in network traffic.
In Annual Conference on Artificial Intelligence, pages
44–50. Springer.
Fan, C.-I., Hsiao, H.-W., Chou, C.-H., and Tseng, Y.-F.
(2015). Malware detection systems based on api log
data mining. In Computer Software and Applicati-
ons Conference (COMPSAC), 2015 IEEE 39th An-
nual, volume 3, pages 255–260. IEEE.
Fan, Y., Ye, Y., and Chen, L. (2016). Malicious sequen-
tial pattern mining for automatic malware detection.
Expert Systems with Applications, 52:16–25.
Ghazinour, K., Sokolova, M., and Matwin, S. (2013). De-
tecting health-related privacy leaks in social networks
using text mining tools. In Za
¨
ıane, O. R. and Zilles, S.,
editors, Advances in Artificial Intelligence, pages 25–
39, Berlin, Heidelberg. Springer Berlin Heidelberg.
Hellal, A. and Romdhane, L. B. (2016). Minimal contrast
frequent pattern mining for malware detection. Com-
puters & Security, 62:19–32.
Hicks, C., Beebe, N., and Haliscak, B. (2016). Extending
web mining to digital forensics text mining. In AMCIS
2016: Surfing the IT Innovation Wave - 22nd Ameri-
cas Conference on Information Systems. Association
for Information Systems.
Hoo, K. J. S. (2000). How Much is Enough? A Risk-
Management Approach to Computer Security.
Hou, Y.-T., Chang, Y., Chen, T., Laih, C.-S., and Chen,
C.-M. (2010). Malicious web content detection by
machine learning. Expert Systems with Applications,
37(1):55–60.
Inkpen, D. (2016). Text Mining in Social Media for Secu-
rity Threats, pages 491–517. Springer International
Publishing, Cham.
Kakavand, M., Mustapha, N., Mustapha, A., and Abdullah,
M. T. (2015). A text mining-based anomaly detection
model in network security. Global Journal of Compu-
ter Science and Technology.
Klimt, B. and Yang, Y. (2004). The enron corpus: A new
dataset for email classification research. In Boulicaut,
J.-F., Esposito, F., Giannotti, F., and Pedreschi, D.,
editors, Machine Learning: ECML 2004, pages 217–
226, Berlin, Heidelberg. Springer Berlin Heidelberg.
Lu, Y.-B., Din, S.-C., Zheng, C.-F., and Gao, B.-J. (2010).
Using multi-feature and classifier ensembles to im-
prove malware detection. Journal of CCIT, 39(2):57–
72.
Mike Sconzo. SecRepo.com - Samples of Security Related
Data. Last accessed: 05.01.2017.
Norouzi, M., Souri, A., and Samad Zamini, M. (2016).
A data mining classification approach for behavioral
malware detection. Journal of Computer Networks
and Communications, 2016:1.
Ojoawo, A. O., Fagbolu, O. O., Olaniyan, A. S., and So-
nubi, T. A. (2014). Data leak protection using text
mining and social network analysis. International
Journal of Engineering Research and Development,
10(12):14 – 22.
Parker, D. B. (1998). Fighting Computer Crime: A New
Framework for Protecting Information. John Wiley &
Sons, Inc., New York, NY, USA.
Rieck, K., Trinius, P., Willems, C., and Holz, T. (2011). Au-
tomatic analysis of malware behavior using machine
learning. Journal of Computer Security, 19(4):639–
668.
Schultz, M. G., Eskin, E., Zadok, F., and Stolfo, S. J. (2001).
Data mining methods for detection of new malici-
ous executables. In Security and Privacy, 2001. S&P
2001. Proceedings. 2001 IEEE Symposium on, pages
38–49. IEEE.
Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., and Elo-
vici, Y. (2012). Detecting unknown malicious code by
applying classification techniques on opcode patterns.
Security Informatics, 1(1):1.
Suh-Lee, C., Jo, J.-Y., and Kim, Y. (2016). Text mining for
security threat detection discovering hidden informa-
tion in unstructured log messages. In Communications
and Network Security (CNS), 2016 IEEE Conference
on, pages 252–260. IEEE.
VERIZON. VERIS Community Database. Last accessed:
21.11.2016.
Wang, T.-Y., Horng, S.-J., Su, M.-Y., Wu, C.-H., Wang, P.-
C., and Su, W.-Z. (2006). A surveillance spyware de-
tection system based on data mining methods. In Evo-
lutionary Computation, 2006. CEC 2006. IEEE Con-
gress on, pages 3236–3241. IEEE.
Xylogiannopoulos, K., Karampelas, P., and Alhajj, R.
(2017). Text mining in unclean, noisy or scrambled
datasets for digital forensics analytics. In 2017 Eu-
ropean Intelligence and Security Informatics Confe-
rence (EISIC), pages 76–83.
Zhang, B., Yin, J., Hao, J., Zhang, D., and Wang, S. (2007).
Malicious codes detection based on ensemble lear-
ning. In International Conference on Autonomic and
Trusted Computing, pages 468–477. Springer.
Predicting CyberSecurity Incidents using Machine Learning Algorithms: A Case Study of Korean SMEs
237