Elsner, M., Austerweil, J. L., and Charniak, E. (2007). A
unified local and global model for discourse coher-
ence. In HLT-NAACL, pages 436–443.
Ermakova, L. (2016). Automatic sentence ordering assess-
ment based on similarity. In EVIA@ NTCIR.
Ermakova, L., Mothe, J., and Firsov, A. (2017). A met-
ric for sentence ordering assessment based on topic-
comment structure. In Proceedings of the 40th In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1061–
1064. ACM.
Grosz, B. J., Weinstein, S., and Joshi, A. K. (1995). Center-
ing: A framework for modeling the local coherence of
discourse. Computational linguistics, 21(2):203–225.
Guinaudeau, C. and Strube, M. (2013). Graph-based local
coherence modeling. In ACL (1), pages 93–103.
Kleinberg, J. M. (1999). Authoritative sources in a hy-
perlinked environment. Journal of the ACM (JACM),
46(5):604–632.
Li, J. and Hovy, E. (2014). A model of coherence based on
distributed sentence representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2039–2048.
Lin, Z., Ng, H. T., and Kan, M.-Y. (2011). Automatically
evaluating text coherence using discourse relations. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 997–1006. As-
sociation for Computational Linguistics.
Mihalcea, R. (2004). Graph-based ranking algorithms for
sentence extraction, applied to text summarization. In
Proceedings of the ACL 2004 on Interactive poster
and demonstration sessions, page 20. Association for
Computational Linguistics.
Mihalcea, R. and Tarau, P. (2004). Textrank: Bringing order
into texts. Association for Computational Linguistics.
Newman, M. E. (2011). Complex systems: A survey. arXiv
preprint arXiv:1112.1440.
Parveen, D., Mesgar, M., and Strube, M. Generating coher-
ent summaries of scientific articles using coherence
patterns. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 772–783.
Parveen, D., Ramsl, H.-M., and Strube, M. (2015). Topical
coherence for graph-based extractive summarization.
Parveen, D. and Strube, M. (2015). Integrating importance,
non-redundancy and coherence in graph-based extrac-
tive summarization. In IJCAI, pages 1298–1304.
Radev, D. R., Allison, T., Blair-Goldensohn, S., Blitzer, J.,
Celebi, A., Dimitrov, S., Drabek, E., Hakim, A., Lam,
W., Liu, D., et al. (2004). Mead-a platform for multi-
document multilingual text summarization. In LREC.
Regneri, M. (2007). Finding all cliques of an undirected
graph. In SeminarCurrent Trends in IE WS Jun.
Salton, G., Singhal, A., Mitra, M., and Buckley, C. (1997).
Automatic text structuring and summarization. Infor-
mation Processing & Management, 33(2):193–207.
SanJuan, E., Moriceau, V., Tannier, X., Bellot, P., and
Mothe, J. (2012). Overview of the inex 2012 tweet
contextualization track. Initiative for XML Retrieval
INEX, page 148.
Soricut, R. and Marcu, D. (2006). Discourse generation us-
ing utility-trained coherence models. In Proceedings
of the COLING/ACL on Main conference poster ses-
sions, pages 803–810. Association for Computational
Linguistics.
Tomita, E., Akutsu, T., and Matsunaga, T. (2011). Efficient
algorithms for finding maximum and maximal cliques:
Effective tools for bioinformatics. INTECH Open Ac-
cess Publisher.
Torres-Moreno, J.-M. (2014). Three statistical summariz-
ers at clef-inex 2013 tweet contextualization track. In
CLEF (Working Notes), pages 565–573.
Yeh, J. Y., Ke, H. R., and Yang, W. (2008). ispreadrank:
Ranking sentences for extraction-based summariza-
tion using feature weight propagation in the sentence
similarity network. Expert Systems with Applications,
35(3):1451–1462.
Zingla, M., Ettaleb, M., Latiri, C. C., and Slimani, Y.
(2014). Inex2014: Tweet contextualization using as-
sociation rules between terms. In CLEF (Working
Notes), pages 574–584.
ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence
68