ral networks. In Advances in Neural Information Pro-
cessing Systems.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012b).
Imagenet classification with deep convolutional neu-
ral networks. In Proceedings of the 25th Interna-
tional Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, pages 1097–1105.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion.
Legesse, F., Chernavskaia, O., Heuke, S., Bocklitz, T.,
Meyer, T., Popp, J., and Heintzmann, R. (2015).
Seamless stitching of tile scan microscope images.
Journal of Microscopy, 258(3):223–232.
Li, C., Xu, C., Gui, C., and Fox, M. D. (2005). Level set
evolution without re-initialization: a new variational
formulation. In 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 430–436 vol. 1.
Long, J., Shelhamer, E., and Darrell, T. (2014). Fully
convolutional networks for semantic segmentation.
CoRR, abs/1411.4038.
Naik, S., Doyle, S., Feldman, M., Tomaszewski, J., and
Madabhushi, A. (2008). Automated gland and nuclei
segmentation for grading of prostate and breast cancer
histopathology.
Norouzi, A., Rahim, M. S. M., Altameem, A., Saba, T.,
Rad, A. E., Rehman, A., and Uddin, M. (2014). Med-
ical image segmentation methods, algorithms, and ap-
plications. IETE Technical Review, 31(3):199–213.
Pathak, A. R., Pandey, M., and Rautaray, S. (2018). Ap-
plication of deep learning for object detection. Pro-
cedia Computer Science, 132:1706 – 1717. Interna-
tional Conference on Computational Intelligence and
Data Science.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Peng, Y., Jiang, Y., Eisengart, L., Healy, M., Straus, F.,
and Yang, X. (2011). Computer-aided identification of
prostatic adenocarcinoma: Segmentation of glandular
structures. Journal of Pathology Informatics, 2(1):33.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. CoRR, abs/1505.04597.
Roth, H., Farag, A., Lu, L., Turkbey, E. B., and Sum-
mers, R. M. (2015). Deep convolutional networks
for pancreas segmentation in CT imaging. CoRR,
abs/1504.03967.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M. S., Berg, A. C., and Li, F. (2014). Ima-
genet large scale visual recognition challenge. CoRR,
abs/1409.0575.
Sch
¨
urmann, S., Foersch, S., Atreya, R., Neumann, H.,
Friedrich, O., Neurath, M. F., and Waldner, M. J.
(2013). Label-free imaging of inflammatory bowel
disease using multiphoton microscopy. Gastroenterol-
ogy, 145(3):514 – 516.
Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Sirinukunwattana, K., Snead, D. R. J., and Rajpoot, N. M.
(2015). A stochastic polygons model for glandular
structures in colon histology images. IEEE Transac-
tions on Medical Imaging, 34(11):2366–2378.
Sutton, C. and McCallum, A. (2012). An introduction to
conditional random fields. Foundations and Trends in
Machine Learning, 4(4):267–373.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2014). Going deeper with convolutions.
CoRR, abs/1409.4842.
Theano Development Team (2016). Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688.
Travis E, O. (2006). A guide to numpy. USA: Trelgol Pub-
lishing,.
Vogler, N., Heuke, S., Bocklitz, T. W., Schmitt, M., and
Popp, J. (2015). Multimodal imaging spectroscopy
of tissue. Annual Review of Analytical Chemistry,
8:359–387.
Waldner, M. J., Rath, T., Sch
¨
urmann, S., Bojarski, C., and
Atreya, R. (2017). Imaging of mucosal inflammation:
Current technological developments, clinical implica-
tions, and future perspectives. Frontiers in Immunol-
ogy, 8:1256.
Wu, H.-S., Xu, R., Harpaz, N., Burstein, D., and Gil,
J. (2005). Segmentation of intestinal gland images
with iterative region growing. Journal of Microscopy,
220:190–204.
Semantic Segmentation of Non-linear Multimodal Images for Disease Grading of Inflammatory Bowel Disease: A SegNet-based
Application
405