funded by a grant from the Japan Society for the
Promotion of Science, within the framework of the
Grant-in-Aid for Challenging Exploratory Research.
REFERENCES
Al-Khateeb, B. and Kendall, G. (2012). Effect of look-
ahead depth in evolutionary checkers. Journal of
Computer Science and Technology, 27(5):996–1006.
Allis, L., van der Meulen, M., and van den Herik, H. (1994).
Proof-number search. Artificial Intelligence, 66(1):91
– 124.
Gao, C., M
¨
uller, M., and Hayward, R. (2017). Focused
depth-first proof number search using convolutional
neural networks for the game of hex. In Proceedings
of the Twenty-Sixth International Joint Conference on
Artificial Intelligence (IJCAI-17), pages 3668–3674.
Ishitobi, T., Cincotti, A., and Iida, H. (2013). Shape-
keeping technique and its application to checkmate
problem composition. Artificial Intelligence and
Game Aesthetics: the 2013 AIIDE Workshop (WS-13-
19).
Ishitobi, T., Plaat, A., Iida, H., and van den Herik, J. (2015).
Reducing the seesaw effect with deep proof-number
search. In Advances in Computer Games, pages 185–
197. Springer.
Kato, H., Fazekas, S. Z., Takaya, M., and Yamamura,
A. (2015). Comparative study of monte-carlo tree
search and alpha-beta pruning in amazons. In Infor-
mation and Communication Technology, pages 139–
148. Springer.
Khalid, M. N. A., Ang, E. M., Yusof, U. K., Iida, H.,
and Ishitobi, T. (2015a). Identifying critical positions
based on conspiracy numbers. In International Con-
ference on Agents and Artificial Intelligence, pages
100–127. Springer.
Khalid, M. N. A., Yusof, U. K., Iida, H., and Ishitobi, T.
(2015b). Critical position identification in games and
its application to speculative play. Proceedings of the
7th International Conference on Agents and Artificial
Intelligence (ICAART 2015).
McAllester, D. A. (1988). Conspiracy numbers for min-max
search. Artificial Intelligence, 35(3):287–310.
Nasa, R., Didwania, R., Maji, S., and Kumar, V. (2018).
Alpha-beta pruning in mini-max algorithm–an opti-
mized approach for a connect-4 game. International
Research Journal of Engineering and Technology (IR-
JET), 5(4):1637–1641.
Plaat, A., Schaeffer, J., Pijls, W., and De Bruin, A. (1995).
Best-first fixed-depth game-tree search in practice. In
Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence - Volume 1, IJCAI’95,
pages 273–279, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.
Plaat, A., Schaeffer, J., Pijls, W., and de Bruin, A. (2015).
Best-first and depth-first minimax search in practice.
arXiv preprint arXiv:1505.01603.
Schaeffer, J. (1990). Conspiracy numbers. Artificial Intelli-
gence, 43(1):67 – 84.
Schaeffer, J., Burch, N., Bj
¨
ornsson, Y., Kishimoto, A.,
M
¨
uller, M., Lake, R., Lu, P., and Sutphen, S. (2007).
Checkers is solved. science, 317(5844):1518–1522.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., et al. (2017). Mastering chess and shogi
by self-play with a general reinforcement learning al-
gorithm. arXiv preprint arXiv:1712.01815.
Singh, A. and Deep, K. (2014). Use of evolutionary al-
gorithms to play the game of checkers: Historical
developments, challenges and future prospects. In
Proceedings of the Third International Conference on
Soft Computing for Problem Solving, pages 55–62.
Springer.
Song, Z. and Iida, H. (2017). Using single conspiracy num-
ber to analyze game progress patterns. In Computer,
Information and Telecommunication Systems (CITS),
2017 International Conference on, pages 219–222.
IEEE.
Vu, Q., Ishitobi, T., Terrillon, J.-C., and Iida, H. (2016).
Using conspiracy numbers for improving move selec-
tionin minimax game-tree search.
ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence
546