REFERENCES
3Digify (2015). 3digify, http://3digify.com/.
Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., Xiao, J., Yi, L., and Yu, F. (2015a). ShapeNet:
An Information-Rich 3D Model Repository. Techni-
cal Report arXiv:1512.03012 [cs.GR], Stanford Uni-
versity — Princeton University — Toyota Technolog-
ical Institute at Chicago.
Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., Xiao, J., Yi, L., and Yu, F. (2015b). ShapeNet:
An Information-Rich 3D Model Repository. Techni-
cal Report arXiv:1512.03012 [cs.GR], Stanford Uni-
versity — Princeton University — Toyota Technolog-
ical Institute at Chicago.
Chopra, S. and Balakrishnan, S. (2013). Deep learning for
domain adaptation by interpolating between domains.
Collet Romea, A., Martinez Torres, M., and Srinivasa, S.
(2011). The moped framework: Object recognition
and pose estimation for manipulation. International
Journal of Robotics Research, 30(10):1284 – 1306.
Collet Romea, A. and Srinivasa, S. (2010). Efficient multi-
view object recognition and full pose estimation. In
2010 IEEE International Conference on Robotics and
Automation (ICRA 2010).
Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., and Zisserman, A. (2010). The pascal visual ob-
ject classes (voc) challenge. International Journal of
Computer Vision, 88(2):303–338.
Gopalan, R., Li, R., and Chellappa, R. (2011). Domain
adaptation for object recognition: An unsupervised
approach. In Computer Vision (ICCV), 2011 IEEE In-
ternational Conference on, pages 999–1006. IEEE.
Hao, Q., Cai, R., Li, Z., Zhang, L., Pang, Y., Wu, F., and
Rui, Y. (2013). Efficient 2d-to-3d correspondence fil-
tering for scalable 3d object recognition. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, pages 899–906.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
residual learning for image recognition. CoRR,
abs/1512.03385.
Hinterstoisser, S., Lepetit, V., Wohlhart, P., and Kono-
lige, K. (2017). On pre-trained image features
and synthetic images for deep learning. CoRR,
abs/1710.10710.
Irschara, A., Zach, C., Frahm, J.-M., and Bischof, H.
(2009). From structure-from-motion point clouds to
fast location recognition. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on, pages 2599–2606.
Johns, E., Leutenegger, S., and Davison, A. J. (2016). Pair-
wise decomposition of image sequences for active
multi-view recognition. In Computer Vision and Pat-
tern Recognition (CVPR), 2016 IEEE Conference on,
pages 3813–3822. IEEE.
Kehl, W., Manhardt, F., Tombari, F., Ilic, S., and Navab, N.
(2017). Ssd-6d: Making rgb-based 3d detection and
6d pose estimation great again. In Proceedings of the
International Conference on Computer Vision (ICCV
2017), Venice, Italy, pages 22–29.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C. J. C., Bottou,
L., and Weinberger, K. Q., editors, Advances in Neu-
ral Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc.
Long, M., Cao, Y., Wang, J., and Jordan, M. I. (2015).
Learning transferable features with deep adaptation
networks. In Proceedings of the 32Nd International
Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pages 97–105.
JMLR.org.
Maturana, D. and Scherer, S. (2015). VoxNet: A 3D Convo-
lutional Neural Network for Real-Time Object Recog-
nition. In IROS.
Peng, X., Sun, B., Ali, K., and Saenko, K. (2014). Explor-
ing invariances in deep convolutional neural networks
using synthetic images. CoRR, abs/1412.7122.
Qi, C. R., Su, H., Nießner, M., Dai, A., Yan, M., and
Guibas, L. J. (2016). Volumetric and multi-view cnns
for object classification on 3d data. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 5648–5656.
Ren, S., He, K., Girshick, R. B., and Sun, J. (2015). Faster
R-CNN: towards real-time object detection with re-
gion proposal networks. CoRR, abs/1506.01497.
Sarkar, K., Pagani, A., and Stricker, D. (2016). Feature-
augmented trained models for 6dof object recognition
and camera calibration. In Proceedings of the 11th
Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, pages
632–640.
Sarkar, K., Varanasi, K., and Stricker, D. (2017). Trained
3d models for cnn based object recognition. In Pro-
ceedings of the 12th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 5: VISAPP, (VISI-
GRAPP 2017), pages 130–137.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Skrypnyk, I. and Lowe, D. (2004). Scene modelling, recog-
nition and tracking with invariant image features. In
Mixed and Augmented Reality, 2004. ISMAR 2004.
Third IEEE and ACM International Symposium on,
pages 110–119.
Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. G.
(2015a). Multi-view convolutional neural networks
for 3d shape recognition. In Proc. ICCV.
Su, H., Qi, C. R., Li, Y., and Guibas, L. J. (2015b). Render
for cnn: Viewpoint estimation in images using cnns
trained with rendered 3d model views. In The IEEE
International Conference on Computer Vision (ICCV).
Sun, B., Feng, J., and Saenko, K. (2015). Return of frustrat-
ingly easy domain adaptation. CoRR, abs/1511.05547.
Sun, B. and Saenko, K. (2016). Deep CORAL: correla-
tion alignment for deep domain adaptation. CoRR,
abs/1607.01719.
ICPRAM 2019 - 8th International Conference on Pattern Recognition Applications and Methods
436